Paper Title:
Recent Progress in the 3D Experimentation and Simulation of Nanoindents
  Abstract

This work studies the rotations of a (111) Cu single crystal due to the application of a conical nanoindent. With the aid of a joint high-resolution field emission SEM-EBSD set-up coupled with serial sectioning in a focused ion beam (FIB) system in the form of a cross-beam 3D crystal orientation microscope (3D EBSD) a 3D rotation map underneath the indent could be extracted. When analyzing the rotation directions in the cross section planes (11-2) perpendicular to the (111) surface plane below the indenter tip we observe multiple transition regimes with steep orientation gradients and changes in rotation direction. A phenomenological and a physically-based 3D elastic-viscoplastic crystal plasticity model are implemented in two finite element simulations adopting the geometry and boundary conditions of the experiment. While the phenomenological model predicts the general rotation trend it fails to describe the fine details of the rotation patterning with the frequent changes in sign observed in the experiment. The physically-based model, which is a dislocation density based constitutive model, succeeded to precisely predict the crystal rotation map compared with the experiment. Both simulations over-emphasize the magnitude of the rotation field near the indenter relative to that measured directly below the indenter tip. However, out of the two models the physically-based model reveals better crystal rotation angles

  Info
Periodical
Edited by
P. B. Prangnell and P. S. Bate
Pages
199-204
DOI
10.4028/www.scientific.net/MSF.550.199
Citation
N. Zaafarani, F. Roters, D. Raabe, "Recent Progress in the 3D Experimentation and Simulation of Nanoindents", Materials Science Forum, Vol. 550, pp. 199-204, 2007
Online since
July 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hun Kee Lee, Seong Hyun Ko, Hyun Chul Park
Abstract:A model describing nanoindentation as plastic deformation resulting from a strain gradient is investigated. Using a simplified axisymmetric...
911
Authors: Yoji Shibutani, Tomohito Tsuru
Abstract:The present paper summarizes the crystallographic dependence of the displacement burst behavior observed in nanoindentation using two single...
39
Authors: Jana Horníková, Miroslav Černý, Pavel Šandera, Jaroslav Pokluda
Abstract:The nanoindentation test in the dislocation free crystal of copper is simulated by finite element calculations coupled with ab initio...
801
Authors: Arijit Lodh, Indradev Samajdar, Raghvendra Tewari, Dinesh Srivastava, Gautam Kumar Dey, Prita Pant
Chapter 2: Deformation
Abstract:The present study deals with nanoindentation behavior of commercial Zircaloy 2 and high purity (5N purity) crystal bar Zirconium. The effect...
311