Paper Title:
Comparison between the Thermodynamical Behaviour of PdTe2 and PtTe2, while Subjected Isothermally to High Pressure
  Abstract

In the present paper we studied the thermodynamical behaviour under high pressure of two MTe2-type compounds (M = Pd, Pt) by applying the thermodynamical method, which we elaborated in previous studies [1,2]. The two discussed compounds are representatives of the CdI2 structure type, which is bi-dimensional and as such is atypical for the big family of lamellar MQ2- type dichalcogenides (Q=S, Se, Te). Specific of lamellar structure is the strong ionicity of the bonds. Its direct consequence is cleavage obtaining, lubrication properties, anisotropic physic properties. One of the most interesting points stands on the possibility for realising interactions between the layers of different types of ions. That could be done under high pressure by any of the following transformation processes: (i) a phase transition to the typical pyrite structure; (ii) a phase rearrangements changing the parameters of the crystal cell but keeping the 2D-type structure. The computation of the volumetric thermodynamical functions showed that both PdTe2 and PtTe2 do not undergo any classical phase transition [1]. But we observed a curious difference in their stability: PtTe2 loosed its stability quite fast and PdTe2 was quite stable. Aiming to clarify if the difference in the volumetric entropy generation was due to different phase rearrangements, we calculated the longitudinal thermodynamical functions. In such a way we detected that both PdTe2 and PtTe2 undergo a phase rearrangement. The change along one of the space axis in both compounds was compensated by the reverse change along the other space axis. Like this no changes at the volumetric level were observed. The longitudinal calculations gave an explanation for the differences in entropy generation at volumetric level: beyond the rearrangement point PdTe2 decreases its entropy generation, i.e. its new arrangement is somehow stable under increasing pressure. While, beyond its rearrangement point PtTe2 increases its entropy generation, i.e. even in the new arrangement it loses stability under increasing pressure. We conclude that both PdTe2 and PtTe2 do not undergo a classical phase transition at volumetric level. At longitudinal level both compounds undergo phase rearrangement. A difference between PdTe2 and PtTe2 is observed in their entropy generation beyond the rearrangement point.

  Info
Periodical
Edited by
Andreas Öchsner and José Grácio
Pages
63-68
DOI
10.4028/www.scientific.net/MSF.553.63
Citation
V. Grigorova, D. Roussev, S. Jobic, "Comparison between the Thermodynamical Behaviour of PdTe2 and PtTe2, while Subjected Isothermally to High Pressure", Materials Science Forum, Vol. 553, pp. 63-68, 2007
Online since
August 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: S.M.H. Seyedkashi, Golam Hosein Liaghat, Hassan Moslemi Naeini, M. Hoseinpour Gollo
Abstract:Tube hydroforming technology is still considered a new technique growing fast in automotive and aircraft industries. Many researches on all...
133
Authors: Jiu Yang Yu, Jiu Yang Gao, Wei Lin, Cheng Gang Wang, Yan Yang Wu, Jian Min Xu
Abstract:The performance of reciprocating seals in rapping device of gasifier was studied through finite element method. The contact stress, Von-Mises...
48
Authors: Gui Zhong Li, Ze Deng, Bo Wang, Meng Geng
Abstract:China is rich in CBM resources, but so far, some production wells present low production and rapid decline trend. In addition to these...
2267
Authors: Sebastian Rösel, Marion Merklein
Abstract:The need of light weight constructions and parts with tailored or even more homogeneous mechanical properties especially for structural...
121
Authors: Zhi Xiang Yu, Lan Yan Zhang, Ya Na Zhao, Tao Wei
Chapter 4: Road and Bridge Engineering
Abstract:In order to study effectiveness of measures taken to protect mountain bridge piers against rockfall in the upper reaches of the Minjiang...
1683