Paper Title:
Scaling of Chlorosilane SiC CVD to Multi-Wafer Epitaxy System
  Abstract

A SiC epitaxy process based on chlorosilane/propane chemistry has been successfully transferred from a single-wafer R&D system to a multi-wafer CVD reactor. The optimized process results in very smooth epi surface (RMS~0.24nm) and minimum surface pits (less than 0.5/cm2). Both n-type and p-type doping in a wide range are demonstrated using nitrogen and aluminum, respectively. The high performance benchmarks for thickness uniformity (intra-wafer variation <1% and inter-wafer variation <1%) and doping uniformity (intra-wafer variation <6% and inter-wafer variation <3%) are achieved on 5 x 3-inch wafers. The carrier lifetime in these epilayers measured by μ-PCD is over 5 μs, the longest value reported so far for SiC epitaxial wafers.

  Info
Periodical
Materials Science Forum (Volumes 556-557)
Edited by
N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall
Pages
145-148
DOI
10.4028/www.scientific.net/MSF.556-557.145
Citation
J. W. Wan, M. J. Loboda, M. F. MacMillan, G. Y. Chung, E.P. Carlson, V.M. Torres, "Scaling of Chlorosilane SiC CVD to Multi-Wafer Epitaxy System", Materials Science Forum, Vols. 556-557, pp. 145-148, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: A. Savtchouk, E. Oborina, A.M. Hoff, J. Lagowski
755
Authors: Bernd Thomas, Christian Hecht
Abstract:In this paper we present recent results of epitaxial growth of 4H-SiC on 3” (0001) 8° and 4° off-oriented wafers using a multi-wafer hot-wall...
141
Authors: Giuseppe Condorelli, Marco Mauceri, Giuseppe Pistone, L.M.S. Perdicaro, Giuseppe Abbondanza, F. Portuese, Gian Luca Valente, Danilo Crippa, Filippo Giannazzo, Francesco La Via
Abstract:A process has been developed to grow multi-epy high doped structure. Trichlorosilane (TCS) and Ethylene have been used as precursor; Nitrogen...
127
Authors: Lin Dong, Guo Sheng Sun, Jun Yu, Guo Guo Yan, Wan Shun Zhao, Lei Wang, Xin He Zhang, Xi Guang Li, Zhan Guo Wang
Chapter 3: Epitaxial Growth 4H SiC
Abstract:We present our recent results on of 10 × 100 mm 4H-SiC epitaxy by a warm-wall planetary reactor at a growth rate of 10 μm/h. The epilayers...
239
Authors: Tatsuya Masuda, Akira Miyasaka, Jun Norimatsu, Yutaka Tajima, Daisuke Muto, Kenji Momose, Hitoshi Osawa
1.2 Epitaxial and Thin Films Growth
Abstract:For the popularization of SiC power device, improvement on both productivity and quality of 150 mm diameter SiC epitaxial wafer is...
201