Paper Title:
Heavily Doped Polycrystalline 3C-SiC Growth on SiO2/Si (100) Substrates for Resonator Applications
  Abstract

3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 μm-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 ⋅cm, 54 cm2/Vs, and 2.0×1017 cm-3, respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10-3 ⋅cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 μm. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.

  Info
Periodical
Materials Science Forum (Volumes 556-557)
Edited by
N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall
Pages
179-182
DOI
10.4028/www.scientific.net/MSF.556-557.179
Citation
G. S. Sun, J. Ning, X. F. Liu, Y. M. Zhao, J. Y. Li, L. Wang, W. S. Zhao, L. Wang, "Heavily Doped Polycrystalline 3C-SiC Growth on SiO2/Si (100) Substrates for Resonator Applications", Materials Science Forum, Vols. 556-557, pp. 179-182, 2007
Online since
September 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Md. Mosharaf Hossain Bhuiyan, Tsuyoshi Ueda, Tomoaki Ikegami
Abstract:SnO2 thin films have been grown on Si3N4 substrates and also on Al2O3 sensor substrates with Pt interdigitated electrodes by the pulsed...
223
Authors: Mei Ping Jiang, Meng Zhao, Jin Hua Li
Optical/Electronic/Magnetic Materials
Abstract:Using vanadyl acetylacetonate (C10H14O5V) as precursor, use Tantalum Ethoxide...
2177
Authors: M. Rajendraprasad Reddy, Mutsumi Sugiyama, K. T. Ramakrishna Reddy
Chapter 13: Thin Films
Abstract:Nickel-doped ZnO thin films with different Ni contents (0 - 15%) were deposited on glass substrate at 350°C by a spray pyrolysis technique....
1423
Authors: Ting Ting Yao, Hong Lin Liu, Wan Yu Ding, Dong Ying Ju, Wei Ping Chai
Abstract:N-doped TiO2 films were prepared by using N ion beams to bombard TiO2 films surface. By controlling the metal ultrahigh vacuum gat valve,...
302