Paper Title:
Topology Based Growth Law and New Analytical Grain Size Distribution Function of 3D Grain Growth
  Abstract

Based on topological considerations and results of Monte Carlo Potts model simulations of three-dimensional normal grain growth it is shown that, contrary to Hillert’s assumption, the average self-similar volume change rate is a non-linear function of the relative grain size, which in the range of observed grain sizes can be approximated by a quadratic polynomial. In particular, based on an adequate modification of the effective growth law, a new analytical grain size distribution function is derived, which yields an excellent representation of the simulated grain size distribution.

  Info
Periodical
Materials Science Forum (Volumes 558-559)
Edited by
S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara
Pages
1183-1188
DOI
10.4028/www.scientific.net/MSF.558-559.1183
Citation
P. Streitenberger, D. Zöllner, "Topology Based Growth Law and New Analytical Grain Size Distribution Function of 3D Grain Growth", Materials Science Forum, Vols. 558-559, pp. 1183-1188, 2007
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: N. Maazi, N. Rouag, Richard Penelle
Abstract:A grain growth simulation based on the concept of grain boundary migration driven by the radius curvature has been tested to study the...
887
Authors: Kyung Jun Ko, Pil Ryung Cha, Nong Moon Hwang
2557
Authors: Dana Zöllner, Peter Streitenberger
Abstract:A modified Monte Carlo Potts model algorithm for single-phase normal grain growth in three dimensions in presented, which enables an...
589
Authors: Giuseppe Carlo Abbruzzese, Massimiliano Buccioni
Abstract:The statistical model of grain growth is able to predict the effect of Zener drag on the grain size distribution evolution and on grain...
1005
Authors: Yulia Ivanisenko, Hans Jorg Fecht
Abstract:We suggest a simple method to study the mechanical behaviour of nanocrystalline (nc) samples in compression-torsion mode. High applied...
203