Paper Title:
Improvement of the Fatigue Characteristic of AZ31 Magnesium Alloy by Microstructures Control
  Abstract

High-strain conditions as a means of microstructure control have recently been investigated to improve the ductility and enhance the strength of magnesium alloys. The level of superplastic deformation and the fatigue properties of the wrought materials have also been studied. In comparison, only a small number of such reports are available on cast materials. As a part of the search for applications of magnesium alloys, comparisons of structural changes and mechanical properties should be made between wrought and cast materials. In the present study, the grain refinement of cast and extruded materials made from commercially available AZ31 magnesium alloy was conducted using a multi-axial alternative forging method. The relationships between the structural changes and working processes and the relationships between changes in the mechanical properties as well as grain sizes and fatigue properties are discussed. Both the cast and the extruded materials tended to exhibit uniform crystalline structures with an increasing number of working cycles. Dynamic recrystallization was observed during both working and static recrystallization during both reheating and holding. When an equivalent strain of 0.6 was applied, the localized formation of ultra-fine grains of 0.5 μm was observed. The tensile strength and yield stress had maximum values in the initial stage of the multi-axial alternative forging. Although ductility improved with higher numbers of working cycles, the strength decreased. This can be explained by the dynamic and static recrystallization processes and work softening.

  Info
Periodical
Materials Science Forum (Volumes 558-559)
Edited by
S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara
Pages
781-786
DOI
10.4028/www.scientific.net/MSF.558-559.781
Citation
Y. Nagata, M. Noda, H. Shimizu, K. Funami, H. Mori, "Improvement of the Fatigue Characteristic of AZ31 Magnesium Alloy by Microstructures Control", Materials Science Forum, Vols. 558-559, pp. 781-786, 2007
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yoshimasa Takayama, Y. Otsuka, Toshiya Shibayanagi, Hajime Kato, Kunio Funami
Abstract:Grain refinement and high temperature deformation in two kinds of magnesium alloys subjected to friction stir processing (FSP) have been...
55
Authors: Xin Tao Liu, Man Ping Liu, Qu Dong Wang, Wei Guo, Dong Di Yin
Abstract:Mg-3wt.%Y alloys were processed by cyclic extrusion and compression (CEC) up to 7 passes at different temperatures from 375 to 450 °C,...
767
Authors: Mahmood Fatemi Varzaneh, Jose María Cabrera, Abbas Zarei Hanzaki
Abstract:A new continuous severe plastic deformation (SPD) method called accumulative back extrusion (ABE) was employed to fabricate ultra-fine...
1033
Authors: Shao Feng Zeng, Kai Huai Yang, Wen Zhe Chen
Chapter 7: Transmission and Control of Fluid
Abstract:Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K....
2124