Paper Title:
Thermal Analysis and Microstructure Comparison Between A356 Aluminum Alloy and A356/15%vol. SiCP Cast Composite Modified with Strontium
  Abstract

A study of the effect of strontium on some solidification parameters, such as eutectic nucleation temperature, eutectic growth temperature, eutectic undercooling temperature and eutectic undercooling time, has been carried out using thermal analysis for a composite reinforced with 15 vol. % SiCP and, for comparison, for an A356 aluminum alloy. The composite is prepared by the melt stirring technique with a SiC particle size of 38 μm. Thermal analysis results show that the presence of SiCP in the unmodified A356 aluminum alloy increases the eutectic growth temperature (TE) and the eutectic nucleation temperature (TNucl); on the contrary, SiCP decreases the eutectic undercooling temperature (θ) and the eutectic undercooling time (tE). These phenomena suggest that SiC particles give favorable conditions for the growth of eutectic silicon. On the other hand, the modification with strontium of the composite material, although showing basically the same effect on the eutectic parameters as the one described for the A356 aluminum alloy, brings about certain differences due to the presence of the SiC particles. Microstructural analysis shows that the eutectic structures in the composite are coarser than those of the matrix alloy and they do not have the classic fibrous eutectic shape obtained in the matrix alloy. For the matrix alloy, when the Sr concentration increases beyond the quantity required to obtain a well-modified structure, the eutectic structure suffers a gradual coarsening or a reversion from fine fibrous silicon to coarser silicon; subsequently, when the Sr concentration is higher than 0.068%, Al2Si2Sr particles are produced. In the composite material there is also a gradual coarsening of the eutectic structure, although the appearance of Al2Si2Sr particles is just seen when the Sr concentration reaches 0.106%.

  Info
Periodical
Edited by
H. Balmori-Ramirez, J.G. Cabañas-Moreno, H.A. Calderon-Benavides, K. Ishizaki and A. Salinas-Rodriguez
Pages
47-52
DOI
10.4028/www.scientific.net/MSF.560.47
Citation
E. Trejo E., J.A. García-Hinojosa, M.K. Surappa, E. Rodríguez, "Thermal Analysis and Microstructure Comparison Between A356 Aluminum Alloy and A356/15%vol. SiCP Cast Composite Modified with Strontium", Materials Science Forum, Vol. 560, pp. 47-52, 2007
Online since
November 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: E.P. Masuku, Gonasagren Govender, L. Ivanchev, Heinrich Möller
Abstract:Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR...
151
Authors: Guo Fa Mi, Cui Fen Dong, Chang Yun Li, Hai Yan Wang
Abstract:Cast, sub-rapidly solidified and rapidly solidified Al-5Fe alloy and Al-5Fe-3Y alloy were respectively prepared by vacuum melting, suction...
2462
Authors: Chang Jiang Song, Yuan Yi Guo, Liang Zhu, Ke Feng Li, Min Yang, Qi Jie Zhai
Abstract:High chromium cast iron alloys are widely used to produce wear resistant components. However, formation of the large carbides restricts their...
44
Authors: Rupa Dasgupta, Satyabrata Das, Amol Kumar Jha
Friction and Wear in Material Processing
Abstract:Metal Matrix Composite made from Al-7075 based alloy dispersed with 10% SiC particles through the liquid metallurgy route were evaluated for...
555
Authors: S.G. Shabestari, R. Gholizadeh
Chapter 2: Forming in Melt or Near Melt Condition
Abstract:Dense precipitation of various intermetallic compounds is a common feature in the microstructure of Al-Si piston alloys. In this...
289