Paper Title:
Carbon Nanotube Nano Composites for Multifunctional Applications
  Abstract

Owing to their exceptional stiffness, strength, thermal and electrical conductivity, carbon nanotubes have the potential for the development of nano composites materials for a wide variety of applications. In order to achieve the full potential of carbon nanotubes for structural, thermal and electrical multifunctional applications, both single wall carbon nanotubes (SWNTs), double wall nanotubes (DWNTs) and multi wall nanotubes (MWNTs) need to be developed into fully integrated carbon nanotube composites. Full integration of nanotubes requires their development beyond conventional composites so that the level of the non-nanotube material is designed to integrate fully with the amount of nanotubes and where the nanotubes are part of the matrix rather than a differing component, as in the case of conventional composites. In order to advance the development of multifunctional materials from nanotubes, this research is focused on the simultaneous control of structural properties, thermal and electrical conductivity of fully integrated carbon nanotube composites. These are hybrid material systems designed to surpass the limits of rule of mixtures engineering and composite design. The goals are to implement designs to fully mimic the properties of carbon nanotubes on larger scales for enhanced thermal and electrical management in addition to controlled strength and toughness. These new approaches involve, functionalization, dispersion, stabilization, alignment, polymerization and reaction bonding, in order to achieve full integration. Typical examples of polymeric and ceramic matrices, as well as other material systems are presented and discussed.

  Info
Periodical
Materials Science Forum (Volumes 561-565)
Main Theme
Edited by
Young Won Chang, Nack J. Kim and Chong Soo Lee
Pages
1397-1402
DOI
10.4028/www.scientific.net/MSF.561-565.1397
Citation
F. D.S. Marquis, "Carbon Nanotube Nano Composites for Multifunctional Applications", Materials Science Forum, Vols. 561-565, pp. 1397-1402, 2007
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Csaba Balázsi, Ferenc Wéber, Péter Arató, Balazs Fényi, Norbert Hegman, Zoltán Kónya, Imre Kiricsi, Zófia Vértesy, László Péter Biró
Abstract:This work is focusing on exploring preparing processes to tailor the microstructure of carbon nanotube (CNT) reinforced silicon...
1723
Authors: Aleksander Muc
Abstract:Since the atomic structure of carbon nanotubes demonstrates evidently anisotropic mechanical properties an analytical molecular structural...
1250
Authors: Jian Bao Hu, Shao Ming Dong, Xiang Yu Zhang, Zhi Hui Hu, Bo Lu, Jin Shan Yang, Qing Gang Li, Bin Wu
Chapter 2: Engineering Ceramics and Ceramic Composites
Abstract:Surface modification of carbon fibers(CF) by physicochemical methods directs an attractive approach for improvement of metal uptake from...
761
Authors: Ying Cao, Li Pan
Chapter 2: Materials Science
Abstract:In the present investigation, resin transfer molding has been used to produce high quality carbon fiber epoxy composites and...
753
  | Authors: Li Li Yang, Yong Quan Zhang, Yong Ge, Qing Hua Zhu, Ce Zhang
Chapter 3: Advanced Technique in Road Engineering and Material Science
Abstract:Structural health monitoring of concrete infrastructures has attracted enormous attention due to the brittle nature of concrete. In this...
224