Paper Title:
Study of the Early Stages of Recrystallization in a Cold Rolled ELC Steel Using FIB-EBSD Tomography
  Abstract

An extra low carbon steel was cold rolled to 85% reduction and annealed at 680 °C to generate a microstructure containing ~2 % recrystallized grains. A partly recrystallized volume was analyzed using 3-D FIB-EBSD tomography. The results show that nucleation and subsequent growth of recrystallizing grains is more complex processes than that revealed using 2-D metallographic techniques. In the present steel, it was found that subgrains were found to be the origin of nucleation and these grains exhibit an internal structure similar to the surrounding deformation substructure. However, a certain subgrain keeps expanding to a stage where some part or parts of the boundary reach(es) and consume(s) a high stored energy deformation zone(s) to form (a) local dislocation free zone(s) having an orientation similar to the subgrain. After this stage, the residual dislocations in the original subgrain are annihilated and nuclei enter a well-defined growth stage. The overall growth of recrystallization nuclei was found to be controlled by the variation in both the stored energy and orientation of the surrounding deformation substructure that results in heterogeneous growth by so-called orientation pinning.

  Info
Periodical
Materials Science Forum (Volumes 561-565)
Main Theme
Edited by
Young Won Chang, Nack J. Kim and Chong Soo Lee
Pages
2013-2016
DOI
10.4028/www.scientific.net/MSF.561-565.2013
Citation
W. Q. Xu, M. Ferry, "Study of the Early Stages of Recrystallization in a Cold Rolled ELC Steel Using FIB-EBSD Tomography", Materials Science Forum, Vols. 561-565, pp. 2013-2016, 2007
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Michael Ferry, Wan Qiang Xu, Nora Mateescu, Julie M. Cairney, John F. Humphreys
Abstract:A typical dual-beam platform combines a focussed ion beam (FIB) microscope with a field emission gun scanning electron microscope (FEGSEM)....
55
Authors: Wan Qiang Xu, Michael Ferry, Julie M. Cairney, John F. Humphreys
Abstract:A typical dual-beam platform combines a focused ion beam (FIB) microscope with a field emission gun scanning electron microscope (FEGSEM)....
413
Authors: Kee Hyun Kim, Nick R. Green, William D. Griffiths
Chapter 2: Casting & Solidification
Abstract:The combined function of a FIB milling technique utilising beam sizes of under 10 nm coupled with a micromanipulator and FIB imaging enables...
150