Paper Title:
A Pressured Steam Jet Approach to Tool Wear Minimization in Cutting of Metal Matrix Composites
  Abstract

Metal matrix composites (MMCs) have been found to possess tremendous prospective engineering applications that require materials offering a combination of lightweight with considerably enhanced mechanical and physical properties. However, the applications of MMCs are limited by their poor machinability which is a result of their highly abrasive nature that causes excessive wear to the cutting tools. In this study, an investigation into the mechanism of the tool wear in cutting of MMCs is carried out. It is found that during cutting of an MMC, the tool cutting edge will impact on the reinforcement particles. The impacted particles will then either be dislodged from the matrix, doing no harm to the tool, or be embedded into the matrix, ploughing on the tool flank and causing excessive tool flank wear. According to this tool wear mechanism, a pressured steam jet approach is developed for the minimization of the tool wear by preventing the impacted reinforcement particles from being embedded in the workpiece matrix. Experimental tests for cutting of SiC–aluminum MMC using cubic boron nitride (KB-90) and polycrystalline diamond (KP-300) tool inserts with the aid of the pressured steam jet are conducted. The results show that from full factorial design of experiments the effect of the pressured steam jet plays a significant role on the tool wear followed by tool inserts and depth of cut. The working mechanism of the pressured steam jet method and the experimental testing results are discussed in detail.

  Info
Periodical
Materials Science Forum (Volumes 561-565)
Main Theme
Edited by
Young Won Chang, Nack J. Kim and Chong Soo Lee
Pages
643-646
DOI
10.4028/www.scientific.net/MSF.561-565.643
Citation
D. Anjaiah, R. Shetty, R. Pai, M.V. Kini, S.S. Rao, "A Pressured Steam Jet Approach to Tool Wear Minimization in Cutting of Metal Matrix Composites", Materials Science Forum, Vols. 561-565, pp. 643-646, 2007
Online since
October 2007
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Manuel Belmonte, Filipe J. Oliveira, M.A. Lanna, C.R.M. Silva, Evaldo Jose Corat, Rui F. Silva
609
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, Rodrigo de Matos Oliveira, M.V. Ribeiro, Olivério Moreira Macedo Silva
Abstract:During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is...
598
Authors: Xiao Li Zhu, Song Zhang, Tong Chao Ding, Yuan Wei Wang
Abstract:The experimental study presented in this paper aims to investigate the effects of cutting parameters on cutting forces, and search the...
96
Authors: Yue Feng Yuan, Wen Ying Zhang, Xing Chang
Chapter 6: New Materials and Advanced Materials
Abstract:Cutting force experiments in turning aluminum-silicon alloy ZL104 are carried out with cement carbide tool YG8. The influence of cutting...
971