Paper Title:
A Mathmatical Approach for Modeling Real Hot Forming Process Using Physical Simulation Results
  Abstract

Recently, physical simulation has played a more and more important role in modeling hot forming process. However, difficulty still existed in simulating real hot forming process using physical simulation results directly for obvious difference in deformation history between physical simulation condition and real hot forming process. In this work, difference between physical simulation and real hot forming process was discussed and a mathmatical approach was proposed to model real hot forming process using physical simulation results. The main consideration of the method was to put physical simulation results into differential forms in order to take count in the contribution of deformation history (temperature and strain rate) at each incremental step. For the application of the approach, modeling of material flow stress, dynamical recrystallization including critical condition and recrystallziaton fraction, damage evolution and fracture criteria during real hot forming process were presented as examples, although experimental support was still needed for validation and further application.

  Info
Periodical
Materials Science Forum (Volumes 575-578)
Edited by
Jitai NIU, Zuyan LIU, Cheng JIN and Guangtao Zhou
Pages
502-507
DOI
10.4028/www.scientific.net/MSF.575-578.502
Citation
S. H. Zhang, H. W. Song, M. Cheng, Z. T. Wang, "A Mathmatical Approach for Modeling Real Hot Forming Process Using Physical Simulation Results", Materials Science Forum, Vols. 575-578, pp. 502-507, 2008
Online since
April 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Xu Dong Zhou, Xiang Ru Liu
Chapter 3: Materials Forming, Machining and Joining
Abstract:The researches of non-oriented silicon steel are mainly focused on the effect of main processing parameters on the microstructure and...
1468