Paper Title:
Numerical Simulation on Pharmaceutical Powder Compaction
  Abstract

In this paper, we present a modified density-dependent Drucker-Prager Cap (DPC) model with a nonlinear elasticity law developed to describe the compaction behavior of pharmaceutical powders. The model is implemented in ABAQUS with a user subroutine. Using microcrystalline cellulose (MCC) Avicel PH101 as an example, the modified DPC model is calibrated and used for finite element simulations of uniaxial single-ended compaction in a cylindrical die. To validate the proposed model, finite element simulation results of powder compaction are compared with experimental results. It was found that finite element analyses gave a good prediction of both the loading-unloading curves during powder compaction and the compaction force required for making a tablet with a specified density. Further, the failure mechanisms of chipping, lamination and capping during tabletting are investigated by analysing the stress and density distributions of powders during the three different phases of the tabletting processes, i.e. compression, decompression and ejection. The results indicate that the model has excellent potential to describe the compaction process for generic pharmaceutical powders.

  Info
Periodical
Materials Science Forum (Volumes 575-578)
Edited by
Jitai NIU, Zuyan LIU, Cheng JIN and Guangtao Zhou
Pages
560-565
DOI
10.4028/www.scientific.net/MSF.575-578.560
Citation
L. H. Han, J. Elliott, S. Best, R. Cameron, A.C. Bentham, A. Mills, G.E. Amidon, B.C. Hancock, "Numerical Simulation on Pharmaceutical Powder Compaction", Materials Science Forum, Vols. 575-578, pp. 560-565, 2008
Online since
April 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Pu Qing Chen, Wei Xia, Zhao Yao Zhou, Wei Ping Chen, Yuan Yuan Li
Abstract:Metal cutting operations constitute a large percentage of the manufacturing activity. One of the most important objectives of metal cutting...
201
Authors: Zou Shun Zheng, Yuan Peng Zhu, Qin Wu Xu, Xuan Hui Qu
Abstract:Metal powders behave high strain rate, viscous effect and first hardening then softening deformation characteristics during the forming...
1154
Authors: Jian Li, Bin Ting Yang
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:Utilization of MSC.Marc FEM software, the typical warm compaction process of molybdeum powder was simulated. Influence of processing...
524
Authors: Jian Li, Bin Ting Yang
Abstract:Utilization of finite element method (FEM) and warm compaction process, study on mechanical theory and FEM simulation of molybdenum powder...
119
Authors: Guo Ning Si, Chen Lan
Chapter 14: Modelling, Analysis and Simulation
Abstract:The finite element method was conducted to simulate the pharmaceutical powder compression process by using Drucker–Prager Cap model and...
1403