Paper Title:
Numerical Simulation of Thermal Induced Crack Propagation in Laminated Composites
  Abstract

A coupled thermo-mechanical model is employed to analyze the thermo-mechanical behavior of a widely used laminated composite subject to temperature decrease at service conditions. Three sets of governing equations, i.e. heat transfer, thermo-mechanical deformation and damage evolution are respectively described in the model. These equations are then assembled into a coupled matrix equation using finite element formulation and then solved simultaneously at each time interval. A numerical model of two layered composites with some preexisting equal-spacing cracks along the interface in the lower layer is set up to investigate the thermal induced crack propagation due to temperature decrease. Results are presented in the form of crack propagation process in stress profiles and discussed. Numerical simulations show that the crack propagation behavior of the composites is closely dependent on the physico-mechanical properties of two layers and preexisting cracks. It is found that thermal induced cracks penetrate into the upper layer and grow in the upper layer due to the low strength of the upper layer when the model is subject to uniform temperature decrease.

  Info
Periodical
Materials Science Forum (Volumes 575-578)
Edited by
Jitai NIU, Zuyan LIU, Cheng JIN and Guangtao Zhou
Pages
886-891
DOI
10.4028/www.scientific.net/MSF.575-578.886
Citation
T. Xu, J. Y. Yang, C. A. Tang, S. B. Tang, "Numerical Simulation of Thermal Induced Crack Propagation in Laminated Composites", Materials Science Forum, Vols. 575-578, pp. 886-891, 2008
Online since
April 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yan Jun Chang, Ke Shi Zhang, Hui Juan Hu, Gui Qiong Jiao
Abstract:The various damage mechanisms in 3D-C/SiC composites are identified using acoustic emission (AE) signal parameters, and the Felicity effect...
834
Authors: S. Kanagaraj, A. Fonseca, R.M. Guedes, Monica S.A. Oliveira, José A.O. Simões
Abstract:Ultrahigh molecular weight polyethylene (UHMWPE) is a unique polymer with outstanding physical and mechanical properties that makes it...
331
Authors: Xian Liang Zhou, Duo Sheng Li, Ai Hua Zou, Xiao Zhen Hua, Zhi Guo Ye, Qing Jun Chen
New Functional Materials
Abstract:SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and...
658
  | Authors: Li Li Yang, Yong Quan Zhang, Yong Ge, Qing Hua Zhu, Ce Zhang
Chapter 3: Advanced Technique in Road Engineering and Material Science
Abstract:Structural health monitoring of concrete infrastructures has attracted enormous attention due to the brittle nature of concrete. In this...
224