Paper Title:
Mechanical Approach for Prediction of Microcracking in Multipass Weld Metal of Ni-Base Alloy 690
  Abstract

The occurrence of microcracks, especially ductility-dip crack in multipass weld metal during GTAW and laser overlay welding processes of Ni-base alloy 690 was predicted by the mechanical approach. The stress/strain analysis in multipass welds was conducted using the thermo elasto-plastic finite element method. The brittle temperature range for ductility-dip cracking (DTR) of the reheated weld metal was determined by the Varestraint test. Plastic strain in the weld metal accumulated with applying the weld thermal cycle in multipass welding. The plastic strain-temperature curve in the La free weld metal did not cross the DTR in the cooling stage of GTAW process, however, it crossed the DTR in the cooling stage of reheating process by subsequent welding. On the other hand, the plastic strain-temperature curves of any weld passes in the La added weld metal did not cross the DTR. Ductility-dip cracks occurred in the La free weld metal except for the final layer, however, any ductility-dip cracks did not occur in the La added weld metal during multipass welding. It could be understood that ductility-dip crack would occur during not only single-pass welding but also multipass welding when plastic strain intersected the DTR.

  Info
Periodical
Materials Science Forum (Volumes 580-582)
Edited by
Changhee Lee, Jong-Bong Lee, Dong-Hwan Park and Suck-Joo Na
Pages
1-4
DOI
10.4028/www.scientific.net/MSF.580-582.1
Citation
K. Saida, M. Sakamoto, K. Nishimoto, "Mechanical Approach for Prediction of Microcracking in Multipass Weld Metal of Ni-Base Alloy 690", Materials Science Forum, Vols. 580-582, pp. 1-4, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Hyeon Taek Son, J.M. Hong, Ik Hyun Oh, Jae Seol Lee, T.S. Kim, Kouichi Maruyama
Abstract:Mg97Zn1Y2 alloy powders were prepared from gas atomization process, followed by consolidation using spark plasma sintering (SPS) process....
1517
Authors: Yi Guo Song, Feng Chen, Li Li, Yu Feng Zheng
Abstract:The advanced manufacturing technology of TiNiNb wide hysteresis shape memory alloy fastener ring was performed by using the tungsten inert...
529
Authors: Cui Fang Duan, Wei Li, Ji Liang Zhang
Chapter 4: Material Engineering and its Application Technology
Abstract:This article studies aluminum alloy plate through 16 to 3mm thick with a hole under room temperature fracture test. The experimental results...
315
Authors: Xin Wu Ma, Guo Qun Zhao, Wen Juan Li
Chapter 5: Materials Processing and Chemical Technologies
Abstract:A new method for determination of friction coefficient in sheet metal forming of Mg alloy AZ31B is presented in this paper. The method is...
430