Paper Title:
Influence of Reversible Hydrogen Alloying on Nanostructure Formation in Titanium Alloys Subjected to Severe Plastic Deformation
  Abstract

The method for production of a structure with a grain size of 30-40 nm in two-phase titanium alloys is proposed. It is shown, that the nanostructure can be formed in billets of 150×70×15 mm, and sheets of 250×150×1 mm. The method consists of several steps including hydrogen alloying of the alloy, heat treatment, warm deformation and finally dehydrogenating vacuum annealing. α-, α+β and β-titanium alloys have been investigated. Hydrogen content varied in the range 0.1– 30 at. %. Microstructure was examined using optical, scanning, transmission electron microscopy and X-ray analysis after every step of the treatment. The investigations have shown that a specific character of phase transformations in hydrogenated titanium alloys plays a leading role in formation of nanostructure. The effect of dissolved hydrogen on dynamic recrystallization in α- and β- phases is of a secondary importance. Additional refinement in structure is observed in the deformed alloys after vacuum annealing, if its temperature is less than the temperature of their deformation. The work was focused on the optimization of hydrogen content and deformation conditions with the aim to create the nanostructure in titanium alloys and to enhance their mechanical properties.

  Info
Periodical
Materials Science Forum (Volumes 584-586)
Edited by
Yuri Estrin and Hans Jürgen Maier
Pages
86-91
DOI
10.4028/www.scientific.net/MSF.584-586.86
Citation
M. A. Murzinova, G. A. Salishchev, "Influence of Reversible Hydrogen Alloying on Nanostructure Formation in Titanium Alloys Subjected to Severe Plastic Deformation", Materials Science Forum, Vols. 584-586, pp. 86-91, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: E.P. Masuku, Gonasagren Govender, L. Ivanchev, Heinrich Möller
Abstract:Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR...
151
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: N.I. Vlasova, V.S. Gaviko, A.G. Popov, N.N. Shchegoleva, L.A. Stashkova, Dmitriy Gunderov, Xavier Sauvage
Abstract:Equiatomic FePd alloy in the ordered state has been processed by means of high-pressure torsion deformation (HPTD) and then annealed. X-ray...
392
Authors: De Liang Zhang, Hong Bao Yu, Yuong Chen
Abstract:Bulk nanostructured (grain sizes in the range of 50-200nm) and ultrafine structured (grain sizes in the range of 100-500nm) -TiAl based...
149