Paper Title:
β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions
  Abstract

Bone marrow cells are a potential source to induce different lineage cells which can be used to rebuild or replace damaged tissues using a Tissue Engineering (TE) approach. However, TE strategies usually require the use of a material to support the development of a biological tissue. Beta-polyvinylidene fluoride (β-PVDF) is a biocompatible, thermoplastic with piezo-electrical properties that has been shown to provide a good cellular attachment and therefore might present advantageous properties as a scaffold material for cell seeding/culturing. The present study describes the characterization of β-PVDF membranes as a support material for growth and differentiation of goat marrow cells (GMCs) into osteoblasts, leading to the formation of substitutes for tissue regeneration. The obtained results suggest that β-PVDF piezoelectric properties influence cellular behavior. β- PVDF membranes not only enhance GMCs adherence and proliferation but also improve differentiation towards the osteogenic phenotype both in static and dynamic culture conditions. Furthermore, β-PVDF membranes exhibit very promising properties, suggesting that this material provides adequate support for the seeding and the development of undifferentiated cells towards a desired phenotype.

  Info
Periodical
Materials Science Forum (Volumes 587-588)
Edited by
António Torres Marques, António Fernando Silva, António Paulo Monteiro Baptista, Carlos Sá, Fernando Jorge Lino Alves, Luís Filipe Malheiros and Manuel Vieira
Pages
72-76
DOI
10.4028/www.scientific.net/MSF.587-588.72
Citation
M.T. Rodrigues, M. E. Gomes, J. F. Mano, R. L. Reis, "β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions", Materials Science Forum, Vols. 587-588, pp. 72-76, 2008
Online since
June 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yasuhito Tanaka, Hajime Ohgushi, Shigeyuki Kitamura, Akira Taniguchi, Koji Hayashi, Shinji Isomoto, Yasuaki Tohma, Yoshinori Takakura
181
Authors: A.G. Dias, M.A. Lopes, José D. Santos, Maria Helena F.V. Fernandes
Abstract:Based upon the CaO-P2O5 glass system, two glass ceramics were prepared in the meta-, pyro- and orthophosphate regions. The present work...
565
Authors: H.D. Cao, Yan Fei Tan, Xiao Yan Lin, Hong Song Fan, Xing Dong Zhang
Abstract:Glutaraldehyde was increasingly used to improve the stability of the collagen-based biomaterials as cross-linking. To investigate in vitro...
223
Authors: Lia Rimondini, Federica Demarosi, Ismaela Foltran, Nadia Quirici
Chapter 3: Biomaterials
Abstract:Electrospinning technique is an efficient processing method to manufacture micro-and nanosized fibrous structures by electrostatic force for...
584
Authors: Miho Nakamura, Akiko Nagai, Kimihiro Yamashita
VI. Cell Studies and Cell-Material Interactions
Abstract:The osteoblast behaviors on the biomaterial substrates are recognized to play a fundamental role in osteoconduction process. The purpose of...
357