Paper Title:
Characterization of the Oxide Films Formed at the Surface of Ni-Base Alloys in Pressurized Water Reactors Primary Coolant by Transmission Electron Microscopy
  Abstract

The oxide film formed on nickel-based alloys in Pressurized Water Reactors (PWR) primary coolant conditions (325°C, aqueous media) has been investigated by Transmission Electron Microscopy (TEM). TEM observations revealed an oxide layer divided in two parts. The internal layer was mainly composed of a continuous spinel layer, identified as a mixed iron and nickel chromite (Ni(1-x)FexCr2O4). Moreover, nodules of Cr2O3 were present at the interface between this spinel and the alloy. The external layer is composed of large crystallites corresponding to a spinel structure rich in iron (Ni(1-z)Fe(2+z)O4) resulting from precipitation phenomena. The influence of alloy surface defects was also studied underlining two main consequences on the formation of the passive film e.g. the internal layer. On one hand, the growth kinetics of the internal spinel rich in chromium increased with the surface defect density. Besides that, when the defect density increased, the oxide scale became more finely crystallized. This result agrees with a growth mechanism due to a rate limiting process of diffusion through the grain boundaries of the oxide. On the other hand, the quantity of Cr2O3 nodules increased with the number of surface defects, revealing that the nodules nucleated preferentially at defect location.

  Info
Periodical
Materials Science Forum (Volumes 595-598)
Edited by
Pierre Steinmetz, Ian G. Wright, Alain Galerie, Daniel Monceau and Stéphane Mathieu
Pages
539-547
DOI
10.4028/www.scientific.net/MSF.595-598.539
Citation
M. Sennour, L. Marchetti, S. Perrin, R. Molins, M. Pijolat, O. Raquet, "Characterization of the Oxide Films Formed at the Surface of Ni-Base Alloys in Pressurized Water Reactors Primary Coolant by Transmission Electron Microscopy", Materials Science Forum, Vols. 595-598, pp. 539-547, 2008
Online since
September 2008
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: A.A. Kodentsov, M.J.H. van Dal, Csaba Cserháti, Lajos Daróczi, F.J.J. van Loo
73
Authors: N. R. Ha, Z. X. Yang, Kyu Hong Hwang, J. K. Lee
Abstract:Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy...
177
Authors: Cui Li, Wei Qi, Kutsuna Muneharu
Abstract:A zircon coating was applied on the surface of Ti-6Al-4V alloy by plasma spray and its effect on the high temperature tensile properties of...
547
Authors: Guo Fa Mi, Cui Fen Dong, Chang Yun Li, Hai Yan Wang
Abstract:Cast, sub-rapidly solidified and rapidly solidified Al-5Fe alloy and Al-5Fe-3Y alloy were respectively prepared by vacuum melting, suction...
2462
Authors: Rui Na Ma, Sha Sha Jin, Hong Yun Li
Metal Alloy Materials
Abstract:The static constant corrosion tests on Fe-B eutectic alloy are investigated in liquid zinc at 500°C. The systematic observation and research...
805