Paper Title:
Study on the Microstructure and Deformation Behavior of Ultrafine-Crystalline Cu-Y Ribbons
  Abstract

Cu99.8Y0.2, Cu99.2Y0.8 and Cu98Y2 alloy ribbons were prepared by single roller melt spinning. The microstructure was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), high voltage electron microscope (HVEM) and high resolution electron microscopy (HREM). The results showed that α-Cu was the dominative phase in the rapid solidification ribbons of three alloys. A secondary phase Cu4Y was detected in the Cu98Y2 ribbon by XRD. The grain size was in a range of 50-200 nm in the Cu99.2Y0.8 and Cu98Y2 ribbons. Many nano-scale twins and some dislocations existed inside the larger grains. However, the grains in Cu99.8Y0.2 ribbon were in the size of microns and the sub-grains with small misorentations were in 100-200 nm. To understand the deformation mechanism, in situ tensile test were carried out at a High Voltage Electron Microscope (HVEM). The results showed that the deformation is predominated by the dislocation slip in larger grains. To accommodate the deformation, elastic deformation occured in the small grains in the initial stage of the deformation. Meanwhile, some small grains maybe deform by grain rotations. With strain increasing, some fractures generated and propagated along the grain boundaries or across the grains.

  Info
Periodical
Materials Science Forum (Volumes 610-613)
Main Theme
Edited by
Zhongwei Gu, Yafang Han, Fusheng Pan, Xitao Wang, Duan Weng and Shaoxiong Zhou
Pages
591-597
DOI
10.4028/www.scientific.net/MSF.610-613.591
Citation
Z. W. Du, Z.M. Sun, B.L. Shao, A.S. Liu, "Study on the Microstructure and Deformation Behavior of Ultrafine-Crystalline Cu-Y Ribbons", Materials Science Forum, Vols. 610-613, pp. 591-597, 2009
Online since
January 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Y.Q. Wu, Han Huang, Jin Zou
Abstract:In this work, deformation of monocrystalline silicon (Si) under nanoscratching was investigated using transmission electron microscopy...
15
Authors: Yan Li, Xiao Hong Chen, Ping Liu, Lin Hua Gao, Bao Hong Tian
Abstract:The behavior of plastic deformation of Cu-15Cr-0.1Zr in-situ composite under different degree of cold drawing deformation was analyzed by...
2191
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Feng Zhao, Ling Yong Cao, Yu Jing Lang, Hua Cui, Lin Zhong Zhuang, Ji Shan Zhang
Abstract:The diversities and relations of microstructures and properties between the center and surface layer in thick-plate 7150 alloy were...
250