Paper Title:
Growth of 4H-SiC Epitaxial Layers on 4° Off-Axis Si-Face Substrates
  Abstract

CVD growth of epitaxial layers with a mirror like surface grown on 75 mm diameter 4° off-axis 4H SiC substrates is demonstrated. The effect of the C/Si ratio, temperature and temperature ramp up conditions is studied in detail. A low C/Si ratio of 0.4 and a temperature of 1530 °C is the best combination to avoid step bunching and triangular defects on the epitaxial layers. Using a low growth rate (about 3 µm/h) 6 μm thick, n-type doped epilayers were grown on 75 mm diameter wafers resulting in an RMS value of 0.7 nm and good reproducibility. 20 μm thick epitaxial layers with a background doping in the low 1014 cm-3 were grown with a mirror-like, defect-free surface. Preliminary results when using higher Si/H2 ratio (up to 0.4 %) and HCl addition are also presented: growth rate of 28 μm/h is achieved while keeping a smooth morphology.

  Info
Periodical
Materials Science Forum (Volumes 615-617)
Edited by
Amador Pérez-Tomás, Philippe Godignon, Miquel Vellvehí and Pierre Brosselard
Pages
81-84
DOI
10.4028/www.scientific.net/MSF.615-617.81
Citation
A. Henry, S. Leone, H. Pedersen, O. Kordina, E. Janzén, "Growth of 4H-SiC Epitaxial Layers on 4° Off-Axis Si-Face Substrates", Materials Science Forum, Vols. 615-617, pp. 81-84, 2009
Online since
March 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rositza Yakimova, Mikael Syväjärvi, R.R Ciechonski, Qamar-ul Wahab
201
Authors: Kazutoshi Kojima, Tomohisa Kato, Satoshi Kuroda, Hajime Okumura, Kazuo Arai
Abstract:We have investigated the generation of new dislocations during the epitaxial growth of 4H-SiC layers. Dislocations were mainly propagated...
147
Authors: Kinga Kościewicz, Wlodek Strupiński, Dominika Teklinska, Krystyna Mazur, Mateusz Tokarczyk, Grzegorz Kowalski, Andrzej Roman Olszyna
Abstract:A good selection of growth parameters (in-situ etching, C/Si ratio, growth rate) enables obtaining of ~1nm high steps of epitaxial layers,...
95
Authors: Takashi Aigo, Wataru Ito, Hiroshi Tsuge, Hirokatsu Yashiro, Masakazu Katsuno, Tatsuo Fujimoto, Wataru Ohashi
Chapter 2: SiC Epitaxial Growth
Abstract:4H-SiC epitaxial growth on 2˚ off-axis substrates using trichlorosilane (TCS) is presented. Good surface morphology was obtained for...
101
Authors: Lin Dong, Guo Sheng Sun, Jun Yu, Guo Guo Yan, Wan Shun Zhao, Lei Wang, Xin He Zhang, Xi Guang Li, Zhan Guo Wang
Chapter 3: Epitaxial Growth 4H SiC
Abstract:We present our recent results on of 10 × 100 mm 4H-SiC epitaxy by a warm-wall planetary reactor at a growth rate of 10 μm/h. The epilayers...
239