Paper Title:
Calculating of the Temperature Distribution of Primary Shear Zone in Orthogonal High Speed Cutting Based on the Non-Uniform Volume Moving Heat Source
  Abstract

A method was presented for calculating the temperature distribution of primary shear zone in orthogonal high speed cutting based on the non-uniform volume moving heat source. The temperature distribution of primary shear zone in orthogonal high speed cutting was calculated by the dynamic plastic constitutive relationship and the distribution of strain and strain rate of primary shear zone. The results show that the temperature distribution of primary shear zone is uneven, from the original plane to the cutoff plane, the cutting temperature increases continuously. In the middle of primary shear zone, the change of cutting temperature is larger, at the position near to original plant and cutoff plane, the change of cutting temperature is smaller. The cutting temperature increases with the increase of cutting speed and cutting depth, but decreases with the increase of rake angle. The comparison with existing method shows that the method presented in this paper is not only available, but also simple, convenient and more accord with the fact of orthogonal high speed cutting.

  Info
Periodical
Materials Science Forum (Volumes 626-627)
Edited by
Dongming Guo, Jun Wang, Zhenyuan Jia, Renke Kang, Hang Gao, and Xuyue Wang
Pages
105-110
DOI
10.4028/www.scientific.net/MSF.626-627.105
Citation
G. H. Li, M. J. Wang, "Calculating of the Temperature Distribution of Primary Shear Zone in Orthogonal High Speed Cutting Based on the Non-Uniform Volume Moving Heat Source", Materials Science Forum, Vols. 626-627, pp. 105-110, 2009
Online since
August 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Toshiyuki Obikawa, Ali Basti, Jun Shinozuka
Abstract:The finite difference method was applied to simulate temperature distribution in the workpiece, cutting zone and tool in the orthogonal...
681
Authors: Wen Jun Deng, C. Li, Wei Xia, X.Z. Wei
Abstract:A coupled thermo-mechanical model of plane-strain orthogonal metal cutting including burr formation is presented using the commercial finite...
71
Authors: José Vitor C. Souza, Maria do Carmo de Andrade Nono, Rodrigo de Matos Oliveira, M.V. Ribeiro, Olivério Moreira Macedo Silva
Abstract:During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is...
598
Authors: B.J. Xiao, Cheng Yong Wang, Ying Ning Hu, Yue Xian Song
Abstract:A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the...
590
Authors: Yang Tan, Yi Lin Chi, Ya Yu Huang, Ting Qiang Yao
Chapter 3: Functional Manufacturing and Information Technology
Abstract:The finite element modeling and simulation of extremely high speed machining of Ti6Al4V alloy are presented in the paper. The Johnson-Cook’s...
293