Paper Title:
A FEM and Experimental Study of Chip Formation in Orthogonal Cutting of Superalloy GH80A
  Abstract

The nickel-based superalloy GH80A has been widely used in kinds of aeronautical key structures because of its high yield stress and anti-fatigue performance at high temperature. However, it is also a typical difficult-to-cut material. In order to improve cutting process, kinds of methods have been applied to study cutting process including experimental approach and finite element method (FEM). In this paper, a comparison of chip formation is carried out between traditional Johnson-Cook (JC) model and Isotropic model. Besides, effects of tool rake angle and friction coefficient on chip formation are investigated by Isotropic model. FEM predicated results such as stress and cutting temperature are also analyzed. Relative turning tests are performed and comparison of chip morphology between FEM and experiment is carried out.

  Info
Periodical
Materials Science Forum (Volumes 626-627)
Edited by
Dongming Guo, Jun Wang, Zhenyuan Jia, Renke Kang, Hang Gao, and Xuyue Wang
Pages
663-668
DOI
10.4028/www.scientific.net/MSF.626-627.663
Citation
J. L. Li, M. Chen, B. Rong, "A FEM and Experimental Study of Chip Formation in Orthogonal Cutting of Superalloy GH80A", Materials Science Forum, Vols. 626-627, pp. 663-668, 2009
Online since
August 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Dong Jin Zhang, Gang Liu, X. Sun, Ming Chen
Abstract:The nickel-based superalloy GH4169 is a typical difficult-to-cut material, but it has been used in a good many kinds of aeronautical key...
359
Authors: Li Zhou, Shu Tao Huang
Abstract:In this paper, a transient dynamic finite-element analysis was carried out to investigate the effects of the cutting speed on cutting force,...
220
Authors: Yang Tan, Yi Lin Chi, Ya Yu Huang, Ting Qiang Yao
Chapter 8: Mechanical Control and Information Processing Technology
Abstract:High speed milling of hard alloy steels utilized in dies and molds is a highly demanding operation. The finite element model was developed to...
2310