Paper Title:
Texture, Microstructure, and Ductility of Mg-Al-Zn Alloy after Equal Channel Angular Pressing
  Abstract

Equal channel angular pressing (ECAP) was used for grain refinement and texture modification in the initial pressed Mg-Al-Zn alloy to study the possibility to enhance the low-temperature deformability of the material. The effect of different ECAP regimes by routes A, C, and BC on the submicrocrystalline grain formation, texture evolution, and plasticity of the alloy have been investigated. The ECAP of the alloy results in the formation of ultrafine grained structure with a grain size of 0.8-3.5 µm independent of pressing routes and regimes. The ECAP also drastically changes the axial texture by splitting the initial texture characterized by a sharp basal component to several more scattered orientations. The degree of the orientation scattering depends on the ECAP regime and route. It is proposed to estimate the effect of the texture on the yield strength and plasticity of the alloy after ECAP through generalized Schmid factors. The comparable calculated and experimental results are obtained only for yield strength.

  Info
Periodical
Materials Science Forum (Volumes 633-634)
Edited by
Yonghao Zhao and Xiaozhou Liao
Pages
365-372
DOI
10.4028/www.scientific.net/MSF.633-634.365
Citation
V. Serebryany, S. V. Dobatkin, V.I. Kopylov, D.I. Nikolayev, H. G. Brokmeier, "Texture, Microstructure, and Ductility of Mg-Al-Zn Alloy after Equal Channel Angular Pressing", Materials Science Forum, Vols. 633-634, pp. 365-372, 2010
Online since
November 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: P.Y. Li, W. Li, X.L. He, Sheng Long Dai, S.Y. Wang, H.Q. Li, H.T. Yang
Abstract:Large extrusion and forgings of Al-9Fe-1.9Mo-1.7Si (wt.%, FMS0918) aluminum alloy for elevated temperature applications were produced by...
1077
Authors: T. Shanmugasundaram, V. Subramanya Sarma, B.S. Murty, Martin Heilmaier
Abstract:The microstructure and mechanical properties of nano-crystalline 2219 Al alloy (Al-6.4Cu-0.29Mn, all in wt %) was studied. Nanocrystalline...
97
Authors: De Liang Zhang, Hong Bao Yu, Yuong Chen
Abstract:Bulk nanostructured (grain sizes in the range of 50-200nm) and ultrafine structured (grain sizes in the range of 100-500nm) -TiAl based...
149
Authors: Yan Wei Sui, Ai Hui Liu, Bang Sheng Li, Jing Jie Guo, Wei Biao Ju
Chapter 1: Materials Properties
Abstract:Ti-6Al-4V alloy castings are made by means of induction melting technology. The relationships between grain size and tensile strength, yield...
496