Paper Title:
Nanostructured Ti2448 Biomedical Titanium Alloy
  Abstract

It is generally accepted that grain refinement by the mechanisms of dislocation interaction, deformation twinning and/or stress-induced martensitic transformation is of relatively low efficiency. Rapid production of nanostructured metallic materials by conventional processing technologies remains a challenge. A new mechanism of fast grain refinement, through highly localized plastic deformation, was recently found in a -type biomedical titanium alloy (Ti2448). This mechanism leads to rapid grain refinement to tens nanometers and even amorphous transition during conventional cold processing. Since such grain refinement induces little strengthening, this process was previously termed soft nanostructuring. Here we review the research into this new way of nanostructuring and discuss the mechanism of grain refinement as well as dispersion strengthening of Ti2448 alloy by the precipitation of a second phase from the nano-sized  matrix.

  Info
Periodical
Materials Science Forum (Volumes 633-634)
Edited by
Yonghao Zhao and Xiaozhou Liao
Pages
535-547
DOI
10.4028/www.scientific.net/MSF.633-634.535
Citation
Y. L. Hao, S. J. Li, M.L. Sui, R. Yang, "Nanostructured Ti2448 Biomedical Titanium Alloy", Materials Science Forum, Vols. 633-634, pp. 535-547, 2010
Online since
November 2009
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: T. Shanmugasundaram, V. Subramanya Sarma, B.S. Murty, Martin Heilmaier
Abstract:The microstructure and mechanical properties of nano-crystalline 2219 Al alloy (Al-6.4Cu-0.29Mn, all in wt %) was studied. Nanocrystalline...
97
Authors: Zhen Tao Yu, Gui Wang, Xi Qun Ma, Matthew S. Dargusch, Jian Ye Han, Sen Yu
Abstract:The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium...
303
Authors: De Liang Zhang, Hong Bao Yu, Yuong Chen
Abstract:Bulk nanostructured (grain sizes in the range of 50-200nm) and ultrafine structured (grain sizes in the range of 100-500nm) -TiAl based...
149