Paper Title:
Recent Developments on the Microstructural Effects Caused by Small-Charge Explosions in FCC Alloys
  Abstract

Metals exposed to small charge explosions, even in absence of overall deformation, show characteristic and permanent microstructural features, that can be related to blast wave properties, e.g. to the charge mass and the charge-to-target distance. In particular, Face Centered Cubic (FCC) alloys with low stacking fault energy may exhibit mechanical twinning due to the high strain rate caused by an explosion, even if in slower processes they mainly deform by slip. In some forensic science investigations, these crystallographic modifications, and particularly the occurrence of twinning, may be among the few remaining clues of a small charge explosion, and may be useful to hypothesize the nature and location of the charge. A wide experimental campaign was performed to correlate the blast wave properties with the ensuing modifications of FCC metal targets, and to investigate the microscopic deformation mechanisms leading to these modifications. In particular, it was attempted to identify the threshold conditions (charge-to-target distance, charge mass, and hence applied stress) that yield barely detectable microstructural modifications, and to study the transition from slip to twinning. FCC metal alloys, with low (α-brass, stainless steel), intermediate (copper, gold alloy), or high (aluminum alloy) stacking fault energy, were exposed to blast waves (caused by 50 or 100 g plastic explosive charges located at increasing charge-to-target distances) and then analyzed by X-ray diffraction, optical microscopy, scanning electron microscopy, and electron backscattered diffraction imaging. A comprehensive review of the most significant findings of the whole research, together with theoretical considerations on the slip and twinning deformation mechanisms, is here presented.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
1029-1034
DOI
10.4028/www.scientific.net/MSF.638-642.1029
Citation
D. Firrao, P. Matteis, C. Pozzi, "Recent Developments on the Microstructural Effects Caused by Small-Charge Explosions in FCC Alloys", Materials Science Forum, Vols. 638-642, pp. 1029-1034, 2010
Online since
January 2010
Export
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Rimma Lapovok
Abstract:Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under...
37
Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Feng Zhao, Ling Yong Cao, Yu Jing Lang, Hua Cui, Lin Zhong Zhuang, Ji Shan Zhang
Abstract:The diversities and relations of microstructures and properties between the center and surface layer in thick-plate 7150 alloy were...
250