Paper Title:
Mechanically Alloyed and Spark Plasma Sintered Aluminium/Precious Metal Oxide Composite Materials
  Abstract

Air-atomised pure aluminium powder with additions of 10 at.% of AgO, PtO2 or PdO was mechanically alloyed (MAed) by using a vibrational ball mill, and MAed powders were consolidated into bulk materials by a spark plasma sintering (SPS) process. Mechano-chemical reactions among pure Al, precious metal oxide and stearic acid, added as a process control agent, during the mechanical alloying (MA) process and subsequent heat treatments were investigated by X-ray diffraction. The mechanical properties of MAed powders obtained under various heat treatment conditions and those of the SPS materials were evaluated by hardness tests. Mechano-chemical reactions occurred in Al/precious metal oxide composite powders during 36 ks of the MA process to form AlAg2, Pt and Al3Pd2 for the Al-AgO, Al-PtO2 and Al-PdO systems, respectively. Further solid-state reactions in MAed powders have been observed after heating at 373 K to 873 K for 7.2 ks. The hardness of MAed powders initially increased significantly after heating at 373 K and then generally decreased with increasing heating temperatures. The full density was obtained for the SPS materials under the conditions of an applied pressure of 49 MPa at 873 K for 3.6 ks. All the SPS materials exhibited hardness values of over 200 HV in the as-fabricated state.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
1824-1829
DOI
10.4028/www.scientific.net/MSF.638-642.1824
Citation
M. Kubota, P. Cizek, "Mechanically Alloyed and Spark Plasma Sintered Aluminium/Precious Metal Oxide Composite Materials ", Materials Science Forum, Vols. 638-642, pp. 1824-1829, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: F.T.C. Lima, Guerold Sergueevitch Bobrovinitchii, Marcello Filgueira
Abstract:Diamond composites consist in the diamond powder mixed with a binder phase, which sintering is carried out by means of the High Pressure-High...
225
Authors: M. Kolář, Vladivoj Očenášek, J. Uhlíř, Ivana Stulíková, Bohumil Smola, Martin Vlach, V. Neubert, K. Šperlink
Abstract:The influence of plastic deformation and heat-treatment on the precipitation of Al3(Sc, Zr) particles and the effect of these precipitates...
357
Authors: Feng Tang, Jin Yong Xu, Yan Tang, Cheng Gao, Peng Gao, Bo Gao, Wei Heng Mo, Yuan Ming Li
Chapter 2: Surface Engineering/Coatings
Abstract:The Cu-Ce infiltration layer was formed on 304 Stainless Steel surface by double glow plasma surface metallurgy technology. The effects of...
298
Authors: M. Marina, K. Alir, W. Rahman, Z. Nooraizedfiza, Mohd Asri Selamat, M.Z.M. Zamzuri
Abstract:This study is focused on fabricating and characterizing iron (Fe) composites prepared by powder metallurgy route reinforced with varying...
738
Authors: Mi Dan Li, Yao Lu, Lu Lu Feng, Huan Niu, Ya Wen Kong
Chapter 2: Research on Materials,Mechanics and Technologies
Abstract:Composites made from phenolic resin are filled with conductive filler mixtures containing copper powders, natural graphite powders and carbon...
120