Paper Title:
Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix-Composites Fabricated by Spark Plasma Sintering (SPS)
  Abstract

Diamond-particle-dispersed copper (Cu) matrix composites were fabricated from Cu-coated diamond particles by spark plasma sintering (SPS) process, and the microstructure and thermal properties of the composites fabricated were examined. These composites can well be consolidated in a temperature range between 973K and 1173K and scanning electron microscopy detects no reaction at the interface between the diamond particle and the Cu matrix. The relative packing density of the diamond-Cu composite increases with increasing sintering temperature and holding time, reaching 99.2% when sintered at a temperature of 1173K for a holding time of 2.1ks. Thermal conductivity of the diamond-Cu composite containing 43.2 vol. % diamond increases with increasing relative packing density, reaching a maximum (654W/mK) at a relative packing density of 99.2%. This thermal conductivity is 83% the theoretical value estimated by Maxwell-Eucken equation. The coefficient of thermal expansion of the composites falls in the upper line of Kerner’s model, indicating strong bonding between the diamond particle and the Cu matrix in the composite.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
2115-2120
DOI
10.4028/www.scientific.net/MSF.638-642.2115
Citation
K. Mizuuchi, K. Inoue, Y. Agari, S. Yamada, M. Tanaka, M. Sugioka, T. Takeuchi, J. Tani, M. Kawahara, J. H. Lee, Y. Makino, "Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix-Composites Fabricated by Spark Plasma Sintering (SPS) ", Materials Science Forum, Vols. 638-642, pp. 2115-2120, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: F. Romero, Vicente Amigó, M.D. Salvador, A. Vicente
Abstract:Titanium metal matrix composites were produced. The powder metallurgy route applied was a conventional route consisting of blending titanium...
817
Authors: Xian Liang Zhou, Duo Sheng Li, Ai Hua Zou, Xiao Zhen Hua, Zhi Guo Ye, Qing Jun Chen
New Functional Materials
Abstract:SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and...
658
Authors: Dong Chen, Zhe Chen, Peng Zhang, Yi Jie Zhang, Haiheng Ma, Hao Wei Wang
Chapter 5: Metal Alloy Materials
Abstract:In-situ TiB2 particles reinforced AA7055 composites were fabricated through mixed-salts route and their bending properties were...
1005
Authors: Zhen Chen, Ye Mao Han, Min Zhou, Rong Jin Huang, Yuan Zhou, Lai Feng Li
Abstract:In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying...
120
Authors: Mi Dan Li, Yao Lu, Lu Lu Feng, Huan Niu, Ya Wen Kong
Chapter 2: Research on Materials,Mechanics and Technologies
Abstract:Composites made from phenolic resin are filled with conductive filler mixtures containing copper powders, natural graphite powders and carbon...
120