Paper Title:
FE Analysis of Microstructure Evolution during Ring Rolling Process of a Large-Scale Ti-6Al-4V Alloy Ring
  Abstract

Microstructure evolution during ring rolling process of a large-scale Ti-6Al-4V ring was investigated with the combined approaches of three dimensional finite element method (FEM) simulation and microstructure prediction model. A microstructure prediction model was established by considering the volume fractions and grain size of  and  phases varying with process variables, and grain growth. In order to perform FE simulation for ring rolling process of Ti-6Al-4V alloy, a constitutive equation was generated by utilizing the flow stress data obtained from hot compression tests at different temperature and strain rate conditions. The volume fraction and grain size of  and  phases during ring rolling were calculated by de-coupled approach between FEM analysis and microstructure prediction model. The prediction results were compared with the experimental ones. Our proposed microstructure simulation module was useful for designing hot forming process of Ti-6Al-4V alloy

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
223-228
DOI
10.4028/www.scientific.net/MSF.638-642.223
Citation
J. T. Yeom, J. H. Kim, J. K. Hong, N. K. Park, C. S. Lee, "FE Analysis of Microstructure Evolution during Ring Rolling Process of a Large-Scale Ti-6Al-4V Alloy Ring", Materials Science Forum, Vols. 638-642, pp. 223-228, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Zhi Min Zhang, Qiang Wang, B.C. Li, X. Zhang
Abstract:Warm compression tests of AZ31 Mg alloy were carried out at five temperatures in 30°C intervals from 210°C to 330°C. The samples of...
1813
Authors: Jung Hwa Seo, Dong Geun Lee, Cheng Lin Li, Xu Jun Mi, Yong Tae Lee
Chapter 1: Advanced Materials and Technology on Metallurgy
Abstract:Microstructure characterization and hardening behavior of a new designed Ti-12.1Mo-1Fe alloy during solution and aging treatment was...
37
Authors: Xin Wu Ma, Guo Qun Zhao, Wen Juan Li
Chapter 5: Materials Processing and Chemical Technologies
Abstract:A new method for determination of friction coefficient in sheet metal forming of Mg alloy AZ31B is presented in this paper. The method is...
430
Authors: Xin Nan Wang, Yue Fei, Xiao Hu Zhou, Zhi Shou Zhu, Jun Li, Guo Qiang Shang, Li Wei Zhu
Abstract:The evolution regularities of microstructure and property of a new metastable β titanium alloy with different solution treatment and aging...
932