Paper Title:
Simulation of the Solidification Parameters of Single Crystal Casting
  Abstract

The effects of thermal physical parameters and boundary conditions on investment solidification parameters were obtained using a computer simulation system. Directional solidification parameters of single crystal superalloy include the temperature distribution, the position and the shape of the solid/liquid interface in the mushy zone of the solidifying blade casting. Commercial finite-element analysis software, ProCAST, was used to simulate the solidification processes of the castings of single crystal DD6. The simulation results indicate that the predictions of the temperature show little sensitivity to the thermal physical parameters and boundary conditions. Further, it has also been shown that the location and the shape of solid/liquid interface is related to the boundary conditions of simulation. Increasing the value of interface heat transfer coefficient decreases the width of mushy zone.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
2251-2256
DOI
10.4028/www.scientific.net/MSF.638-642.2251
Citation
H.P. Jin, J. R. Li, S. Z. Liu, "Simulation of the Solidification Parameters of Single Crystal Casting", Materials Science Forum, Vols. 638-642, pp. 2251-2256, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hong Yan, Zhi Hu, Ti Shuan Suan
Abstract:The technology of computer numerical simulation on casting process is an important frontal field of material science and technology. The...
1041
Authors: Qi Zhang, La Dao Yang
Abstract:A model of heat transfer and solidification of continuous cast has been established, including boundary conditions in the mold and spray...
1431
Authors: Yan Jin, Zhi Bing Tian
Abstract:Because the dynamic soft reduction of continuous casting process is based on the computation of the solidification end point, using model to...
3936
Authors: Ying Zhang, Guo Rui Jia, Xian Jiao Xie, Shui Sheng Xie, Jin Yu He, De Fu Li, Wen Sheng Sun, Mao Peng Geng
Smart/Intelligent Materials/Intelligent Systems
Abstract:Numerical method was used to simulate the solidification process of zinc-aluminum alloy Zamak 5, shrinkage porosity of the zinc-aluminum...
2902
Authors: Shi Long Tian, Zhi Li Yang
Chapter 2: Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:Transient temperature fields of directional solidification of Al-Ni-Co alloys were studied by employing finite element method. Temperature...
494