Paper Title:
Dynamic Recrystallization Modeling during Hot Forging of a Nickel Based Superalloy
  Abstract

A crystalline modeling of deformation implemented in the Finite Element code Abaqus® coupled to a recrystallization Cellular Automaton code is proposed and applied to the hot forging process. A sequential modeling is used in order to obtain a better understanding of the experimental observations and to improve our knowledge of the dynamic recrystallization process. Modeling is performed on aggregates built up from Electron Back Scattered Diffraction measurements. At the deformation temperature, the material presents two phases with a γ matrix of FCC structure and a γ’ hardening phase under a precipitate shape (Ni3(Ti,Al)) of SC structure. The crystalline approach can describe the interactions between the two phases and can compute the evolution of the local strain and stress fields as well as the dislocation density and the lattice rotation in the different grains. A Cellular Automaton algorithm is used for simulating the microstructure evolution during dynamic recrystallization. Nucleation and grain boundary mobility depend on the misorientation and on the local variation in stored energy. This presentation mainly details the different assumptions introduced in the recrystallization code and their influences on the microstructure evolution.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
2321-2326
DOI
10.4028/www.scientific.net/MSF.638-642.2321
Citation
D. Solas, J. Thébault, C. Rey, T. Baudin, "Dynamic Recrystallization Modeling during Hot Forging of a Nickel Based Superalloy", Materials Science Forum, Vols. 638-642, pp. 2321-2326, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Chang Liang Li, Hua Ding, Yong Qing Zhao, Lian Zhou
Abstract:Superplastic forming provides a good way for Ti alloys which are usually difficult to be deformed. Ti75 alloy with a nominal composition of...
2969
Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219
Authors: Wojciech Wajda, Henryk Paul
Abstract:The paper describes the mechanism of deformation at 77 K of pure aluminum bicrystals of different grain orientations. The following...
108