Paper Title:
Modelling of Grain Boundary Stability of Materials under Severe Plastic Deformation and Experimental Verification
  Abstract

Thermodynamic stability of Grain boundary in materials under severe plastic deformation was simulated by the Monte Carlo and the phase field methods. Computer simulations were performed on 3-dimensional textured materials. The Monte Carlo simulation results were qualitatively in good agreement with those by the phase field model. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. The ARB experiments were performed for pure Al and Al alloys-sheets in order to validate the computer simulation results concerning the grain boundary stability of textured materials. With use of the Monte Carlo and the phase field methods. Effect of grain boundary mobilises and interface energy given by the computer simulations.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
2724-2729
DOI
10.4028/www.scientific.net/MSF.638-642.2724
Citation
Y. Saito, C. Masuda, "Modelling of Grain Boundary Stability of Materials under Severe Plastic Deformation and Experimental Verification", Materials Science Forum, Vols. 638-642, pp. 2724-2729, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: N. Maazi, N. Rouag, Richard Penelle
Abstract:A grain growth simulation based on the concept of grain boundary migration driven by the radius curvature has been tested to study the...
887
Authors: Kyung Jun Ko, Pil Ryung Cha, Nong Moon Hwang
2557
Authors: Dana Zöllner, Peter Streitenberger
Abstract:A modified Monte Carlo Potts model algorithm for single-phase normal grain growth in three dimensions in presented, which enables an...
589
Authors: Giuseppe Carlo Abbruzzese, Massimiliano Buccioni
Abstract:The statistical model of grain growth is able to predict the effect of Zener drag on the grain size distribution evolution and on grain...
1005
Authors: Tae Wook Heo, Saswata Bhattacharyya, Long Qing Chen
Abstract:A phase-field model is described for predicting the diffusional phase transformation process in elastically inhomogeneous polycrystals. The...
1084