Paper Title:
The Effect of Cooling Rate on the Damage Micromechanisms of DP Steels
  Abstract

The microstructural failure mechanisms of two DP steel sheets cooled with different cooling rates during their heat treatment are compared in the present study. The as-cold rolled DP steel sheets were annealed at intercritical temperature and cooled down with rates of 45°C/s (quenching) and 2 °C/s (slow cooling). Uniaxial tensile tests were carried out on samples from both sheets and the microstructure of undeformed samples and the broken tensile specimens was evaluated by optical microscopy, scanning electron microscopy and electron back-scatter diffraction technique. Although the grain size did not show significant differences, the amount and size of the constituents, e.g. martensite and bainite, differ between both alloys. Concerning the mechanical properties, the quenched material showed superior strength and ductility besides a less localized deformation at higher strains. The area fraction of voids in the broken specimens was low for both steels. In the slow cooled samples the nucleation of shear bands was on the large voids and cracks were observed along these shears bands. It was concluded that the detrimental effect of void nucleation on both steels is not only attributed to their null-carry capacity but more to the stress concentration close to the voids which gives rise to strain localization in the form of shear bands.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
3337-3342
DOI
10.4028/www.scientific.net/MSF.638-642.3337
Citation
O. León-García, R. H. Petrov, L. Kestens, "The Effect of Cooling Rate on the Damage Micromechanisms of DP Steels", Materials Science Forum, Vols. 638-642, pp. 3337-3342, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Stéphane Godet, C. Georges, Pascal J. Jacques
Abstract:TRIP-assisted multiphase steels exhibit an excellent balance of strength and ductility, which makes them very attractive for the automotive...
4333
Authors: Roumen H. Petrov, Leo Kestens, Yvan Houbaert
Abstract:TRIP-assisted steel with a composition of 0.2%C, 1.5%Mn, 1.5% Al was studied in the undeformed state and after the application of 20%...
265
Authors: Francisca García Caballero, J. Chao, J. Cornide, Carlos García-Mateo, Maria Jesus Santofimia, Carlos Capdevila
Abstract:Carbide free bainite has achieved the highest strength and toughness combinations to date for bainitic steels in as-rolled conditions. By...
118
Authors: Jian Kang, Guo Yuan, Zhao Dong Wang
Abstract:The new generation TMCP process based on ultra fast cooling has recently developed rapidly. In order to develop the low yield ratio...
505
Authors: Zhuang Li, Di Wu, Wei Lv, Shao Pu Kang, Zhen Zheng
Chapter 1: Materials Engineering. Technologies and Processing
Abstract:In this paper, ultra-high strength dual phase steel was investigated. Thermomechanical processing was conducted by using a laboratory hot...
666