Paper Title:
Influence of Strain Path on Microstructure Evolution of Low Carbon Steels
  Abstract

Changes in strain path represent one of the most important processing parameters that characterise hot metal forming processes. In the present study, the effect of strain path change on dynamic recrystallisation, strain-induced precipitation processes and phase transformation behaviour in plain carbon and Nb-microalloyed steels was investigated. To assess the effect of strain-path change, forward/forward and forward/reverse torsion tests were conducted. It has been shown that the strain reversal delays the dynamic recrystallisation kinetics whereas its effect on strain-induced precipitation process of Nb(C,N) is rather negligible. Also the onset of austenite-ferrite transformation is delayed; its products however doesn’t change significantly. This can be due to the fact that ferrite nucleation density plays the second order role compared to the geometry of deformation.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
3418-3423
DOI
10.4028/www.scientific.net/MSF.638-642.3418
Citation
K. Muszka, L. Sun, B. P. Wynne, E. J. Palmiere, M. W. Rainforth, "Influence of Strain Path on Microstructure Evolution of Low Carbon Steels ", Materials Science Forum, Vols. 638-642, pp. 3418-3423, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Atef S. Hamada, L. Pentti Karjalainen, Mahesh C. Somani, R.M. Ramadan
Abstract:The hot deformation behaviour of two high-Mn (23-24 wt-%) TWIP steels containing 6 and 8 wt-% Al with the fully austenitic and duplex...
217
Authors: Pablo Rodriguez-Calvillo, Yvan Houbaert
Abstract:High silicon steel is used for electrical applications because its electrical resistivity is increased and the magnetostriction is reduced....
15
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219