Paper Title:
OIM Analysis of Microstructure and Texture of a TRIP Assisted Steel after Static and Dynamic Deformation
  Abstract

TRIP-assisted steel with a composition of 0.2%C, 1.6%Mn, 1.5%Al was studied in the undeformed state, after the application of 10 and 30 % static tensile strain parallel to rolling the direction of the sheet and after dynamic (Hopkinson) fracture test. Detailed examination of the microstructure and microtexture by means of electron backscattered diffraction (EBSD) was carried out in order to quantify the microstructural constituents and to study the strain distribution. The microtexture evolution and the distribution of the specific texture components between the BCC and FCC phases were studied as a function of the external strain and the strain mode-static or dynamic. The strain localization and strain distribution between the structural constituents were quantified based on local misorientation maps. The full constraint Taylor model was used to predict the texture changes in the material and the results were compared to the experimental findings. Comparing the local misorientation data it was found that at low strains the ferrite accommodates approximately 10 times more deformation than the retained austenite. The strain localizes initially on the BCC-FCC phase boundaries and is then spread in the BCC constituents (ferrite and bainite) creating a deformation skeleton in the BCC phase. It was found that the observed texture changes in the measured retained austenite texture after deformation do not correspond exactly to the model prediction. The austenite texture components which were predicted by the Taylor model were not found in the measured austenite texture after deformation which means that they are first transformed to martensite, which is considered as an indication for the selective transformation of austenite under strain.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
3447-3452
DOI
10.4028/www.scientific.net/MSF.638-642.3447
Citation
R. H. Petrov, J. Bouquerel, K. Verbeken, L. Kestens, P. Verleysen, Y. Houbaert, "OIM Analysis of Microstructure and Texture of a TRIP Assisted Steel after Static and Dynamic Deformation", Materials Science Forum, Vols. 638-642, pp. 3447-3452, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: A. Pétein, L. Ryelandt, Stéphane Godet, Pascal J. Jacques
Abstract:The improvement of the mechanical behaviour of high performance steels brings about a renewed interest for the work hardening rate resulting...
459
Authors: Masayuki Wakita, Yoshitaka Adachi, Yo Tomota
Abstract:This study aims at examining thermomechanical controlled process to realize ultrafine TRIP-aided multi-phase microstructures in low carbon...
4351
Authors: Ohjoon Kwon, Kyoo Young Lee, Gyo Sung Kim, Kwang Geun Chin
Abstract:The body design with light weight and enhanced safety is a key issue in the car industry. Corresponding to this trend, POSCO is developing...
136
Authors: Jie Shi, Wen Quan Cao, Han Dong
Abstract:In this study a C-Mn High Strength Low Alloy steel (HSLAs) was processed by quenching and austenite reverted transformation during annealing...
238
Authors: Li Hui Wang, Di Tang, Hai Tao Jiang, Ji Bin Liu, Yu Chen
Chapter 3: Steel and Iron Technology
Abstract:Effects of continuous annealing process on microstructure and properties of Si based cold-rolled TRIP Steel were studied. The results show...
472