Paper Title:
Alloy Constitution Dependence of Strength and Deformation in Aluminum-Titanium-Vanadium Ternary Alloys Containing Gamma+Beta Dual Phase Microstructures
  Abstract

Compression and compressive creep behavior was studied on Al-Ti-V ternary alloys containing gamma+beta dual phase microstructures; the gamma phase was based on an L10 face centered tetragonal lattice and the beta phase on a disordered body centered cubic lattice. Yield strength and its temperature dependence have been compared with those in the gamma and/or beta single phase materials. The ternary alloy compositions were located on one assumed conjugate line across the gamma+beta dula phase field: the terminal compositions for the gamma and beta phase constituents were Al51Ti40V9 and Al35Ti20V45, respectively (numbers in atomic %). Three other alloys were prepared that contained different fractions of the constituent gamma and beta phases. The Al47Ti35V18, Al43Ti30V27, and Al39Ti25V36 alloys contained beta phase by about 22, 57, and 76 % in their area fractions. All these alloys showed limited deformability at temperature below 900K. The 0.2% proof stresses of the alloys were described in a similar way as a combination law at the room temperature; the 0.2% proof stress increased from about 500 to 1000 MPa with increasing the vanadium content. The high strength of the alloys containing high level of vanadium retained up to 900K, but the proof stress drastically diminished as the temperature was raised above 900K. Under compressive creep tests performed at temperatures ranging from 1100 to 1200 K, the minimum creep rates were smaller in the alloys containing less vanadium, and this could be ascribed to the fact that the beta phase was much softer than the gamma phase at higher temperatures than about 1000K.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
350-355
DOI
10.4028/www.scientific.net/MSF.638-642.350
Citation
T. Takahashi, N. Liu, Y. Yazawa, T. Nunome, "Alloy Constitution Dependence of Strength and Deformation in Aluminum-Titanium-Vanadium Ternary Alloys Containing Gamma+Beta Dual Phase Microstructures ", Materials Science Forum, Vols. 638-642, pp. 350-355, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Yoshisato Kimura, Kiichi Sakai, Shinya Teramoto, Yoshinao Mishima
Abstract:Aiming for further improvement of mechanical properties of Co3AlC-based heat resistant alloys, microstructure control was conducted using...
833
Authors: Amanda L. Bowles, Hajo Dieringa, Carsten Blawert, Norbert Hort, Karl Ulrich Kainer
135
Authors: Wei Zhang, Kunio Arai, J. Qiang, C. Qin, F. Jia, Akihisa Inoue
Abstract:The addition of Ti and Zr to Ni-Ta binary alloys is effective for the increase in stabilization of supercooled liquid and glass-forming...
1421
Authors: Xiao Ping Luo, Lan Ting Xia, Ming Gang Zhang
Abstract:The effect of Cd and Sb addition on the microstructural and mechanical properties of as-cast AZ31 alloys was investigated and compared. The...
197
Authors: Dai Dong Zhang, Xiao Ru Zhang, Xiu Qin Ge, Da Qing Fang, Xue Hua Yu
Chapter 2: Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The effect of low content of Ca (0.9 or less)on the microstructure and mechanical properties of AZ63 alloys were studied in this paper. The...
579