Paper Title:
In Situ Observation of Phase Transformations during Welding of Low Transformation Temperature Filler Material
  Abstract

Tensile residual stresses introduced by conventional welding processes diminish the crack resistance and the fatigue lifetime of welded components. In order to generate beneficial compressive residual stresses at the surface of a welded component, various post-weld treatment procedures are available, like shot peening, hammering, etc. These post-weld treatments are, however time and cost extensive. An attractive alternative is to generate compressive stresses over the complete weld joint in the course of the welding procedure by means of so-called Low Transformation Temperature (LTT) filler materials. The volume change induced by the transformation affects the residual stresses in the weld and its vicinity. LTT fillers exhibit a relatively low transformation temperature and a positive volume change, resulting in compressive residual stresses in the weld area. In-situ measurements of diffraction profiles during real welding experiments using Gas Tungsten Arc (GTA)-welding process were realized successfully for the first time. Transformation temperatures during heating and subsequent cooling of LTT welding material could be assessed by means of energy dispersive diffraction using high energy synchrotron radiation. The results show that the temperature of martensite start (Ms) is strongly dependent on the content of alloying elements. In addition the results indicate that different phase transformation temperatures are present depending on the welding depth. Additional determination of residual stresses allowed it to pull together time and temperature resolved phase transformations and the resulting phase specific residual stresses. It was shown, that for the evaluation of the residual stress state of LTT welds the coexisting martensitic and austenitic phases have to be taken into account when describing the global stress condition of the respective material in detail.

  Info
Periodical
Materials Science Forum (Volumes 638-642)
Main Theme
Edited by
T. Chandra, N. Wanderka, W. Reimers , M. Ionescu
Pages
3769-3774
DOI
10.4028/www.scientific.net/MSF.638-642.3769
Citation
A. Kromm, T. Kannengiesser, J. Gibmeier, "In Situ Observation of Phase Transformations during Welding of Low Transformation Temperature Filler Material", Materials Science Forum, Vols. 638-642, pp. 3769-3774, 2010
Online since
January 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: M.S. Koo, Ping Guang Xu, J.H. Li, Yo Tomota, O. Muransky, Petr Lukáš, Yoshitaka Adachi
Abstract:A challenge was made to examine the micro-structural evolution during thermomechanically controlled processing (TMCP) by in situ neutron...
419
Authors: Masayuki Wakita, Yoshitaka Adachi, Yo Tomota
Abstract:This study aims at examining thermomechanical controlled process to realize ultrafine TRIP-aided multi-phase microstructures in low carbon...
4351
Authors: Harshad K.D.H. Bhadeshia
Abstract:There is now a great deal known about the atomic mechanisms of solid–state phasetransformations, and this knowledge can be exploited to...
13
Authors: Christoph Heinze, Arne Kromm, Christopher Schwenk, Thomas Kannengiesser, Michael Rethmeier
Abstract:The development of high-strength structural steels with yield strengths up to 1000 MPa results in the requirement of suitable filler...
85
Authors: María Fabiana Laguna, Ireth García Aguilar, Pierre Arneodo Larochette, Jorge Luis Pelegrina
Chapter 4: Theory and Modeling of Mechanical and Functional Properties
Abstract:The dynamical behavior of the reverse martensitic transformation has been numerically simulated with an atomistic model and compared with...
137