Paper Title:
In-Grown Stacking Faults Identified in 4H-SiC Epilayers Grown at High Growth Rate
  Abstract

In-grown stacking faults (IGSFs) in thick 4H-SiC epilayers grown at high growth rates have been characterized by micro-photoluminescence (micro-PL) spectroscopy and its intensity mapping. Strong PL emissions from the IGSFs are observed even at room temperature. Three kinds of IGSFs have been identified in the samples based on the micro-PL spectra. Each IGSF shows the specific PL emission peak located at 460 nm, 480 nm, and 500 nm, respectively. The shapes, distributions, and densities of IGSFs in the epilayers are revealed by the micro-PL intensity mapping. The stacking sequences of three IGSFs have been determined as (4,4), (3,5), and (6,2) in the Zhadonov’s notation, respectively, by high-resolution transmission electron microscopy observations. Three identified IGSFs are then classified as quadruple Shockley SFs, triple Shockley SFs, and double Shockley SFs, respectively, based on the shear formation model.

  Info
Periodical
Materials Science Forum (Volumes 645-648)
Edited by
Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller
Pages
287-290
DOI
10.4028/www.scientific.net/MSF.645-648.287
Citation
G. Feng, J. Suda, T. Kimoto, "In-Grown Stacking Faults Identified in 4H-SiC Epilayers Grown at High Growth Rate", Materials Science Forum, Vols. 645-648, pp. 287-290, 2010
Online since
April 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kazuki Takahashi, Kanji Yasui, Maki Suemitsu, Ariyuki Kato, Yuichiro Kuroki, Masasuke Takata, Tadashi Akahane
Abstract:Gallium nitride (GaN) films were grown on SiC/Si(111) substrates by hot-mesh chemical vapor deposition (CVD) using trimethylgallium (TMG)...
261
Authors: Y. Kawai, Tomohiko Maeda, Yoshihiro Nakamura, Yoji Sakurai, Motoaki Iwaya, Satoshi Kamiyama, Hiroshi Amano, Isamu Akasaki, Masahiro Yoshimoto, Tomoaki Furusho, Hiroyuki Kinoshita, Hiromu Shiomi
Abstract:We demonstrate high-speed and high-quality 6H-SiC homoepitaxial growth on a 1°-off c-plane SiC substrate by a closed-space sublimation...
263
Authors: Charles R. Eddy, N.D. Bassim, Michael A. Mastro, R.L. Henry, Mark E. Twigg, Ronald T. Holm, James C. Culbertson, Philip G. Neudeck, J. Anthony Powell, Andrew J. Trunek
Abstract:Silicon carbide (SiC) has become the substrate of choice for III-N epilayers applied to electronic devices due to the lack of a native III-N...
1483
Authors: Tatsuo Fujimoto, Takashi Aigo, Masashi Nakabayashi, S. Satoh, Masakazu Katsuno, Hiroshi Tsuge, Hirokatsu Yashiro, Hosei Hirano, Taizo Hoshino, Wataru Ohashi
Abstract:Time-dependent evolutions of single and quadruple Shockley stacking faults (sSSF and 4SSF) in 4° off 4H-SiC epitaxial layers have been...
319
Authors: Jens Eriksson, Fabrizio Roccaforte, Ming Hung Weng, Filippo Giannazzo, Jean Lorenzzi, Vito Raineri
Abstract:Defects in cubic silicon carbide (3C-SiC) epilayers, that were grown using different techniques and on different substrates, were studied in...
273