Paper Title:
Hydrogen Intercalation below Epitaxial Graphene on SiC(0001)
  Abstract

In this report we review how intrinsic drawbacks of epitaxial graphene on SiC(0001) such as n-doping and strong electronic influence of the substrate can be overcome. Besides surface transfer doping from a strong electron acceptor and transfer of epitaxial graphene from SiC(0001) to SiO2 the most promising route is to generate quasi-free standing epitaxial graphene by means of hydrogen intercalation. The hydrogen moves between the (6p3×6p3)R30◦ reconstructed initial carbon (so-called buffer) layer and the SiC substrate. The topmost Si atoms which for epitaxial graphene are covalently bound to this buffer layer, are now saturated by hydrogen bonds. The buffer layer is turned into a quasi-free standing graphene monolayer, epitaxial monolayer graphene turns into a decoupled bilayer. The intercalation is stable in air and can be reversed by annealing to around 900 °C. This technique offers significant advances in epitaxial graphene based nanoelectronics.

  Info
Periodical
Materials Science Forum (Volumes 645-648)
Edited by
Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller
Pages
623-628
DOI
10.4028/www.scientific.net/MSF.645-648.623
Citation
C. Riedl, C. Coletti, T. Iwasaki, U. Starke, "Hydrogen Intercalation below Epitaxial Graphene on SiC(0001)", Materials Science Forum, Vols. 645-648, pp. 623-628, 2010
Online since
April 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Ameer Al-Temimy, Christian Riedl, Ulrich Starke
Abstract:By carbon evaporation under ultrahigh vacuum (UHV) conditions, epitaxial graphene can be grown on SiC(0001) at significantly lower...
593