Paper Title:
Phase Field Modelling of Dendrite Fragmentation during Thermal Shock
  Abstract

The dendrite grain growth of a succinonitrile based transparent alloy, their fragmentation under an intense thermal shock and the subsequnet morphology evolution during solidification have been simulated using a two-dimensional binary alloy phase field model coupled with heat and solute transfer. The effect of a sudden, rapid change in the thermal environment (thermal shock) was implemented in the model and the resulting effect on the incipient dendritic grain morphology was studied. Thermal shock effectively promoted the fragmentation of the dendritic grains, providing a significant grain multiplication effect to refine the final solidification microstructure.

  Info
Periodical
Materials Science Forum (Volumes 654-656)
Main Theme
Edited by
Jian-Feng Nie and Allan Morton
Pages
1524-1527
DOI
10.4028/www.scientific.net/MSF.654-656.1524
Citation
Z. Guo, J. W. Mi, P. S. Grant, "Phase Field Modelling of Dendrite Fragmentation during Thermal Shock", Materials Science Forum, Vols. 654-656, pp. 1524-1527, 2010
Online since
June 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Bin Li, Qing Yan Xu, Bai Cheng Liu
Abstract:A modified Cellular Automaton model was presented to simulate the evolution of dendritic microstructure in low pressure die casting of Al-Si...
1787
Authors: H. Wang, Q. Li
Abstract:A model based on the cellular automaton (CA) technique for the simulation of solidification microstructure has been developed. An improved...
271
Authors: Hsiun Chang Peng, Long Sun Chao
Abstract:Rather than designated directly as solid if the micromesh (or cell) larger than a nucleus is chosen as the nucleation site, the growth of a...
22
Authors: Jing Liu, Ying Shuo Wang
Chapter 1: Materials Science
Abstract:The phase field method is effective in simulating the formation of solidification microstructure. Based on the phase field models of coupling...
3
Authors: Heng Min Ding, Tie Qiao Zhang, Lv Chun Pu
Chapter 10: Alloys, Steel Materials and Technologies
Abstract:In the paper, a model basing on solute conservative in every unit is developed for solving the solute diffusion equation during...
870