Paper Title:
Effect of Interfacial Reaction on High Temperature Properties of Fe-Cr-Si Fiber Reinforced AC8A Aluminum Composites
  Abstract

Metallic fibers (Fe-Cr-Si) with an excellent high temperature strength are expected to be use as a reinforced material of the engine piston head. However, the high reactivity of Al with most metals has disturbed the use of metallic fibers in aluminum composites until now. In this study, the influence of the reaction products at the fiber/matrix interface on high temperature properties of the composites was investigated by different solution treatment conditions. It is found that hardness and strength increase with an increase the solution treatment temperature (Tst). Reaction products (Al-Fe intermetallic compounds) resulting from solution treatments were formed along the fiber/matrix interface at 773 K or higher. The composites without interfacial reaction products (Tst=763 K) showed excellent rotating-bending fatigue life at 573 K. The fatigue crack propagation in this composite occurred at the necking region of the metal fiber because no cracks were observed in the interfacial reaction products.

  Info
Periodical
Materials Science Forum (Volumes 654-656)
Main Theme
Edited by
Jian-Feng Nie and Allan Morton
Pages
2696-2699
DOI
10.4028/www.scientific.net/MSF.654-656.2696
Citation
N. Fuyama, A. Terayama, T. Fujii, T. Shiraishi, Y. Miyake, G. Sasaki, "Effect of Interfacial Reaction on High Temperature Properties of Fe-Cr-Si Fiber Reinforced AC8A Aluminum Composites", Materials Science Forum, Vols. 654-656, pp. 2696-2699, 2010
Online since
June 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Xian Liang Zhou, Duo Sheng Li, Ai Hua Zou, Xiao Zhen Hua, Zhi Guo Ye, Qing Jun Chen
New Functional Materials
Abstract:SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and...
658
Authors: Wan Chang Sun, He Jun Li, Qian Gang Fu, Shou Yang Zhang
Abstract:PAN-carbon fibers were pretreated using three methods. 2D-C/C composites were fabricated by a rapid chemical liquid-vaporized infiltration...
482
Authors: Zhu Rui, Yu Tao Zhao, Song Li Zhang, Zhi Hong Jia
Chapter 1: Non-Ferrous Metal Material
Abstract:Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction...
122
Authors: Ying Cao, Li Pan
Chapter 2: Materials Science
Abstract:In the present investigation, resin transfer molding has been used to produce high quality carbon fiber epoxy composites and...
753
Authors: Dong Chen, Zhe Chen, Peng Zhang, Yi Jie Zhang, Haiheng Ma, Hao Wei Wang
Chapter 5: Metal Alloy Materials
Abstract:In-situ TiB2 particles reinforced AA7055 composites were fabricated through mixed-salts route and their bending properties were...
1005