Paper Title:
Alloy Design for Enhancing the Fracture Resistance of Heat Treated High Pressure Die-Castings
  Abstract

Recently, heat treatment technologies have been developed by the CSIRO Light Metals Flagship in Australia that allow the 0.2% proof stress of conventional aluminum alloy high pressure diecastings (HPDC’s) to be more than doubled without encountering problems with blistering or dimensional instability [1,2]. A range of other properties may also be improved such as fatigue resistance, thermal conductivity and fracture resistance. However, the current commercial HPDC Al-Si-Cu alloys have not been developed to exploit heat treatment or to optimize these specific mechanical properties, and one potential limitation of heat treating HPDC’s is that fracture resistance may be reduced as strength is increased. The current paper presents the outcomes of a program aimed at developing highly castable, secondary Al-Si-Cu HPDC alloys which display significantly enhanced ductility and fracture resistance in both the as-cast and heat treated conditions. Kahn-type tear tests were conducted to compare the fracture resistance of the conventional A380 alloy with a selection of the newly developed compositions. A comparison has also been made with the current permanent mold cast aluminium alloys and it is shown that the new HPDC compositions typically display higher levels of both tensile properties and fracture resistance.

  Info
Periodical
Materials Science Forum (Volumes 654-656)
Main Theme
Edited by
Jian-Feng Nie and Allan Morton
Pages
954-957
DOI
10.4028/www.scientific.net/MSF.654-656.954
Citation
R. N. Lumley, M. Gershenzon, D. R. Gunasegaram, "Alloy Design for Enhancing the Fracture Resistance of Heat Treated High Pressure Die-Castings", Materials Science Forum, Vols. 654-656, pp. 954-957, 2010
Online since
June 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Zhen Tao Yu, Lian Zhou, Lijuan Luo, Maohong Fan, Yanyan Fu
Abstract:The effects of alloying elements such as Mo, Sn, Zr, Nb, deforming-rate, solid solution and aging treatment on mechanical property and...
595
Authors: Jeong Min Kim, Bong Koo Park, Joong Hwan Jun, Ki Tae Kim, Woon Jae Jung
Abstract:Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the...
374
Authors: E.P. Masuku, Gonasagren Govender, L. Ivanchev, Heinrich Möller
Abstract:Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR...
151
Authors: Bao Hong Zhu, Bai Qing Xiong, Yon Gan Zhang, Udo Fritsching, Ji Shan Zhang, Feng Wang, Zhi Hui Li, Hong Wei Liu
Abstract:A high Zn content Al-Zn-Mg-Cu alloy was prepared by spray forming process and the precipitate behavior and microstructure of the extruded...
481
Authors: Xin Nan Wang, Yue Fei, Xiao Hu Zhou, Zhi Shou Zhu, Jun Li, Guo Qiang Shang, Li Wei Zhu
Abstract:The evolution regularities of microstructure and property of a new metastable β titanium alloy with different solution treatment and aging...
932