Paper Title:
Dynamic Compression Behavior of Lotus-Type Porous Iron
  Abstract

Dynamic and quasi-static compression tests were conducted on lotus-type porous iron with porosity of about 50% using the split Hopkinson pressure bar method and universal testing machine, respectively. In the dynamic compression parallel to the pore direction, a plateau stress region appears where deformation proceeds at nearly constant stress, while the plateau stress region does not appear in the quasi-static compression. The plateau stress region is probably caused by the buckling deformation of matrix iron which occurs only in the dynamic compression. In contrast, the compression perpendicular to the orientation direction of pores exhibits no plateau-stress regions in the both dynamic and quasi-static compression.

  Info
Periodical
Edited by
Hyungsun Kim, JianFeng Yang, Tohru Sekino, Masakazu Anpo and Soo Wohn Lee
Pages
193-196
DOI
10.4028/www.scientific.net/MSF.658.193
Citation
M. Tane, T. Kawashima, K. Horikawa, H. Kobayashi, H. Nakajima, "Dynamic Compression Behavior of Lotus-Type Porous Iron", Materials Science Forum, Vol. 658, pp. 193-196, 2010
Online since
July 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Young Seok Song, M.R. Lee, Jeong Tae Kim
Abstract:Alloy 718 ingot with a diameter of 400mm was made by the vacuum melting process ; VIM followed by VAR. Compression tests were conducted on...
3124
Authors: Feng Jian Shi, Si Zhen Ye, Lei Gang Wang, Sheng Lu
Abstract:The effect of friction on compression load, effective strain, damage value and maximum principal stress were analyzed by rigid-plastic finite...
879
Authors: Feng Jian Shi, Tao Xu, Sheng Lu, Lei Gang Wang
Abstract:In this paper, effective strain and load were simulated by rigid-plastic finite element method (FEM) during cyclic channel die compression...
1300
Authors: Bao Guo Yuan, Qiang Chen, Hai Ping Yu, Ping Li, Ke Min Xue, Chun Feng Li
Chapter 2: Material Science and its Application
Abstract:Compression tests of the hydrogenated Ti6Al4V0.2H alloy were carried out using an Instron 5569 machine at room temperature. True...
517