Paper Title:
Effect of Silicon Carbide Susceptor and Nickel Catalyst Content on Microwave Enhanced Thermal Conversion of Glycerol Waste
  Abstract

Glycerol waste is by-product from the manufacturing of biodiesel by transesterification method containing impurities such as fatty acid, alcohol, spent catalyst, soap and water. Conversion of this waste to value added fuel products would not only improve economic of biodiesel production but also reduce environmental impact from this process. In this work, thermal conversion of glycerol waste by microwave that induced the heat required for initiating the reaction was carried out in a fixed bed quartz reactor using silicon carbide as the bed medium for microwave receptor as well as supporter for nickel catalyst. For non-catalytic reaction at 220W (700°C), carbon and hydrogen conversions were 22.89% and 19.59%, respectively. Gas production was 0.12 L/min syngas, 0.07 L/min H2, 0.82 MJ/m3 of LHV, and 1.27 H2/CO. In catalytic test, the highest syngas, H2, and LHV of 0.41 L/min, 0.23 L/min, and 9.18 MJ/m3, respectively, were obtained from 1%Ni/SiC while the highest H2/CO of 2.72 was obtained from 0.5%Ni/SiC. The 1%Ni/SiC test also resulted in the highest conversion of carbon and hydrogen as much as 79.50% and 83.26%, respectively. For comparison between fresh and regenerated catalysts, it was found that fresh catalyst performed significantly better that regenerated one in term of higher total conversion which may due to sodium deposition on spent catalyst surface.

  Info
Periodical
Edited by
Hyungsun Kim, JianFeng Yang, Tohru Sekino, Masakazu Anpo and Soo Wohn Lee
Pages
73-76
DOI
10.4028/www.scientific.net/MSF.658.73
Citation
Y. Hawangchu, D. Atong, V. Sricharoenchaikul, "Effect of Silicon Carbide Susceptor and Nickel Catalyst Content on Microwave Enhanced Thermal Conversion of Glycerol Waste", Materials Science Forum, Vol. 658, pp. 73-76, 2010
Online since
July 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Gang Li Zhu, Tao Chen, Xue Dong Jiang, Hai Liang Zhang, Bo Lun Yang
Chemical Materials
Abstract:Dehydrogenation process of organic chemical hydrides was improved by modifying the catalyst of nickel-activated carbon (Ni/AC) with lanthanum...
2110
Authors: Adkham Yakubov, M.G. Kutty, Pei Lee Siew, Maizatul S. Shaharun, S.B. Abd Hamid, Vladimir Piven
Abstract:10 and 40 wt% Co/Multiwall Carbon Nanotubes (MWCNT) and 10 and 40 wt% Co/Santa Barbara Amorphous-15 (SBA-15) catalysts were prepared via...
70
Authors: Bin Ru, Xin Bao Li, Ling Jun Zhu, Guo Hui Xu, Yue Ling Gu
Chapter 6: Chiral Catalysis and Organic Synthesis
Abstract:Gas-phase methanol carbonylation over HMOR catalyst was investigated for the synthesis of dimethyl ether (DME) and acetic acid (HOAc). The...
760
Authors: Yan Gao, Tao Luan, Tao Lv, Hong Ming Xu
Chapter 1: Environment Materials and Chemical Environment
Abstract:The SCR catalysts were produced with V2O5, WO3, MoO3 and anatase type TiO2. The thermo stability of the catalyst with different MoO3 loading...
58
Authors: Jun Feng Wen, Xia Liu
Chapter 11: Energy Chemical Engineering and Processes
Abstract:Active carbon (AC) supported Ni–Cu bimetallic catalysts for the direct synthesis of acetic acid (AcOH) from CH3OH and CO were...
1383