Paper Title:
On the Theoretical Limits of Microstructure Evolution in Severe Plastic Deformation
  Abstract

Systematic radiotracer diffusion studies on metals present in severely deformed, ultra-fine grained (UFG) states have revealed the existence of ultra-fast transport paths, which include the so-called “non-equilibrium” grain boundaries and other defects including excess free volume. Under certain experimental conditions percolating porosity is produced even in a ductile metal like pure copper. This result indicates the importance of the cavitation phenomena in severe plastic deformation under those conditions. It is well known that micro-cracking can take place in metals rather early, if the local maximum shear stress equals or exceeds the shear yield stress of the material. However, the growth and propagation of these cracks will be postponed till very late in the deformation process because of the intrinsic ductility of metals, the effect of the superimposed hydrostatic component of the stress system and/ or concurrent dynamic recovery/ recrystallization, when the latter two are present (which is likely to be the case, if the severe plastic deformation operation is successful). That is, the stage in which crack growth and propagation is present represents a material state in which the scope for further deformation is exhausted and fracture processes have taken over. Using these and similar ideas, the load required for equal channel angular pressing, the change in the slope of the Hall-Petch plot with decreasing grain size and the theoretical limit for the smallest grain size attainable in a metal subjected to a severe plastic deformation (SPD) process are predicted and checked against experimental results.

  Info
Periodical
Materials Science Forum (Volumes 667-669)
Edited by
Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon
Pages
283-288
DOI
10.4028/www.scientific.net/MSF.667-669.283
Citation
S. V. Divinski, K. A. Padmanabhan, G. Wilde, "On the Theoretical Limits of Microstructure Evolution in Severe Plastic Deformation", Materials Science Forum, Vols. 667-669, pp. 283-288, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Rimma Lapovok
Abstract:Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under...
37
Authors: Zhi Guo Chen, Zi Qiao Zheng, Dong Feng Han
Abstract:The hot deformation behaviors and microstructure in Al-Cu-Li alloy containing small amount of Ag and Mg were investigated by transmission...
1925
Authors: Atef S. Hamada, L. Pentti Karjalainen, Mahesh C. Somani, R.M. Ramadan
Abstract:The hot deformation behaviour of two high-Mn (23-24 wt-%) TWIP steels containing 6 and 8 wt-% Al with the fully austenitic and duplex...
217
Authors: Gui Qing Chen, Gao Sheng Fu, Wen Duan Yan, Chao Zeng Cheng, Ze Chang Zou
Modeling, Analysis and Simulation of Manufacturing Processes
Abstract:The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0...
306
Authors: Xiao Yu Zhong, Guang Jie Huang, Fang Fang He, Qing Liu
Abstract:Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C...
219