Paper Title:
Microstructure and Properties of Cu-5.7%Cr In Situ Fibrous Composite Produced by Equal-Channel Angular Pressing and Cold Rolling
  Abstract

The composite filament structure was produced in Cu-5.7%Cr as-cast alloy ingots, subjected to equal channel angular pressing (ECAP) and cold rolling (CR) at room temperature. Microstructure, tensile properties and electrical conductivity before and after the severe plastic deformation (SPD) processing have been investigated here. The results point out that the rotation and spreading of Cr particles took place during ECAP and the additional rolling resulting in long thin in situ filaments. The average grain size of a Cu phase is equal to about 200 nm after eight ECAP passes. The formation of finer equiaxed grains of the Cu phase has been revealed after the additional CR. The tensile strength 403 MPa and 507 MPa have been achieved after one and eight ECAP passes respectively and increased up to 517 MPa and 607 MPa after the subsequent CR deformation. The enhancement of the tensile strength and the deterioration of the electrical conductivity have been explained by the microstructure evolution of Cu matrix and the dendritic Cr phase.

  Info
Periodical
Materials Science Forum (Volumes 667-669)
Edited by
Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon
Pages
541-546
DOI
10.4028/www.scientific.net/MSF.667-669.541
Citation
W. Wei, F. Wang, K. X. Wei, I. V. Alexandrov, J. Hu, "Microstructure and Properties of Cu-5.7%Cr In Situ Fibrous Composite Produced by Equal-Channel Angular Pressing and Cold Rolling", Materials Science Forum, Vols. 667-669, pp. 541-546, 2011
Online since
December 2010
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Li Juan Zhou, Yong Ting Zheng, Shan Yi Du
Abstract:BN-AlN-TiB2 compound conductive ceramics from powder mixtures of BN, Al, and TiB2 was fabricated by self-propagating high temperature...
786
  | Authors: Atsunori Kamegawa, Toru Iwaki, Masuo Okada
Abstract:Effects of hydrogenation process of the microstructure, electrical conductivity and mechanical properties for the Cu-(1~3) mass%Ti alloys...
1319
Authors: Yan Cui, Song Bo Xu, Lei Zhang, Shun Guo
Abstract:For obtaining materials with high thermal conductivities and suitable thermal expansion coefficient for thermal management applications,...
1110
Authors: Jie Yan, Kai Yong Jiang
Chapter 3: Composites
Abstract:TiC/Cu composites were prepared by means of high-energy ball mill and cold-press sintering. Confirming the better process parameters, the...
318
Authors: Mi Dan Li, Yao Lu, Lu Lu Feng, Huan Niu, Ya Wen Kong
Chapter 2: Research on Materials,Mechanics and Technologies
Abstract:Composites made from phenolic resin are filled with conductive filler mixtures containing copper powders, natural graphite powders and carbon...
120