Paper Title:
Chloride Based CVD of 3C-SiC on (0001) α-SiC Substrates
  Abstract

A chloride-based chemical-vapor-deposition (CVD) process has been successfully used to grow very high quality 3C-SiC epitaxial layers on on-axis α-SiC substrates. An accurate process parameters study was performed testing the effect of temperature, in situ surface preparation, precursor ratios, nitrogen addition, and substrate polytype and polarity. The 3C layers deposited showed to be largely single-domain material of very high purity and of excellent electrical characteristics. A growth rate of up to 10 µm/h and a low background doping enable deposition of epitaxial layers suitable for MOSFET devices.

  Info
Periodical
Materials Science Forum (Volumes 679-680)
Edited by
Edouard V. Monakhov, Tamás Hornos and Bengt. G. Svensson
Pages
75-78
DOI
10.4028/www.scientific.net/MSF.679-680.75
Citation
A. Henry, S. Leone, F. C. Beyer, S. Andersson, O. Kordina, E. Janzén, "Chloride Based CVD of 3C-SiC on (0001) α-SiC Substrates", Materials Science Forum, Vols. 679-680, pp. 75-78, 2011
Online since
March 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Kazuki Takahashi, Kanji Yasui, Maki Suemitsu, Ariyuki Kato, Yuichiro Kuroki, Masasuke Takata, Tadashi Akahane
Abstract:Gallium nitride (GaN) films were grown on SiC/Si(111) substrates by hot-mesh chemical vapor deposition (CVD) using trimethylgallium (TMG)...
261
Authors: Y. Shishkin, Shailaja P. Rao, Olof Kordina, I. Agafonov, Andrei A. Maltsev, Jawad ul Hassan, Anne Henry, Catherine Moisson, Stephen E. Saddow
Abstract:Crystal growth of 6H-SiC in two non-basal directions is reported. The two explored surfaces are the {1-103} plane, named qC-face, and the...
73
Authors: Wlodek Strupiński, Rafał Bożek, Jolanta Borysiuk, Kinga Kościewicz, Andrzej Wysmolek, Roman Stepniewski, Jacek M. Baranowski
Abstract:The so-called “growth” of graphene was performed using a horizontal chemical vapor deposition (CVD) hot-wall reactor. In-situ etching in the...
199
Authors: Jens Eriksson, Fabrizio Roccaforte, Ming Hung Weng, Filippo Giannazzo, Jean Lorenzzi, Vito Raineri
Abstract:Defects in cubic silicon carbide (3C-SiC) epilayers, that were grown using different techniques and on different substrates, were studied in...
273
Authors: Lin Dong, Guo Sheng Sun, Jun Yu, Guo Guo Yan, Wan Shun Zhao, Lei Wang, Xin He Zhang, Xi Guang Li, Zhan Guo Wang
Chapter 3: Epitaxial Growth 4H SiC
Abstract:We present our recent results on of 10 × 100 mm 4H-SiC epitaxy by a warm-wall planetary reactor at a growth rate of 10 μm/h. The epilayers...
239