Paper Title:
Effect of Microcrystalline Cellulose from Banana Stem Fiber on Mechanical Properties and Crystallinity of PLA Composite Films
  Abstract

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites

  Info
Periodical
Edited by
Hyungsun Kim, Jian Feng Yang, Chuleol Hee Han, Somchai Thongtem and Soo Wohn Lee
Pages
170-173
DOI
10.4028/www.scientific.net/MSF.695.170
Citation
V. Suchaiya, D. Aht-Ong, "Effect of Microcrystalline Cellulose from Banana Stem Fiber on Mechanical Properties and Crystallinity of PLA Composite Films", Materials Science Forum, Vol. 695, pp. 170-173, 2011
Online since
July 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Hyo Jin Kim, Do Won Seo, Jae Kyoo Lim, Toru Fujii
417
Authors: Mohd Hafizuddin Ab Ghani, Ahmad Haji Sahrim
Abstract:We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites....
151
Authors: Zhu Rui, Yu Tao Zhao, Song Li Zhang, Zhi Hong Jia
Chapter 1: Non-Ferrous Metal Material
Abstract:Abstract:Aluminum matrx composites reinforced by in situ ZrB2 particles are fabricated from A356-AlB-K2ZrF6 system via in-situ melt reaction...
122
Authors: Xin Fan
Chapter 3: Micro/Nano Materials
Abstract:Blends of Poly(L-lactide) (PLLA) and nano-SiO2 powder were prepared via solution mixing. Effect of nano-SiO2 particles on the crystallinity...
367
Authors: Dong Chen, Zhe Chen, Peng Zhang, Yi Jie Zhang, Haiheng Ma, Hao Wei Wang
Chapter 5: Metal Alloy Materials
Abstract:In-situ TiB2 particles reinforced AA7055 composites were fabricated through mixed-salts route and their bending properties were...
1005