Paper Title:
Manganese-Cobalt Spinel Coating on Alloy Interconnects for SOFCs
  Abstract

Manganese-cobaltite spinel coatings were produced on Fe-Cr alloys for the improvement of the chemical and mechanical stability of solid oxide fuel cell (SOFC) interconnects. It was found by thermal investigation, i.e., the microscopy of various samples that were heat-treated in air at 800 °C, that the screen-printed coating more effectively inhibited oxide scale growth than the sputtered coating. The reason why the manufacturing method of the spinel coating affected the oxide scale growth rate was investigated. It was demonstrated that the oxide scale in both the samples after annealing in air at 800 °C for 5000 h comprised MnCr2O4 and Cr2O3 with no difference in composition. However, the interface between the alloy and the oxide scale was deeper and rougher and had a larger grain size because of the high oxygen diffusivity in the sputtered coating. In contrast, in the screen-printed sample, the dense spinel layer above the oxide scale blocked oxygen diffusion into the alloy, so the oxide scale growth rate was lower and the interface between the alloy and oxide scale remained flat even after thermal treatment. Introducing a reduction treatment in the manufacturing process made the Mn-Co spinel layer denser and further inhibited the oxide scale growth. Moreover, the addition of Li as a sintering aid into the Mn-Co spinel was found to even more effectively inhibit the oxide scale growth.

  Info
Periodical
Edited by
Toshio Maruyama, Masayuki Yoshiba, Kazuya Kurokawa, Yuuzou Kawahara and Nobuo Otsuka
Pages
406-411
DOI
10.4028/www.scientific.net/MSF.696.406
Citation
Y. Baba, H. Kameda, Y. Matsuzaki, S. Yamashita, N. Yasuda, T. Uehara, T. Horita, K. Yamaji, H. Yokokawa, "Manganese-Cobalt Spinel Coating on Alloy Interconnects for SOFCs", Materials Science Forum, Vol. 696, pp. 406-411, 2011
Online since
September 2011
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: N. R. Ha, Z. X. Yang, Kyu Hong Hwang, J. K. Lee
Abstract:Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy...
177
Authors: Cui Li, Wei Qi, Kutsuna Muneharu
Abstract:A zircon coating was applied on the surface of Ti-6Al-4V alloy by plasma spray and its effect on the high temperature tensile properties of...
547
Authors: Katarzyna Bałdys, Grzegorz Dercz, Łukasz Madej
Abstract:The ferromagnetic shape memory alloys (FSMA) are relatively the brand new smart materials group. The most interesting issue connected with...
171
Authors: Rui Na Ma, Sha Sha Jin, Hong Yun Li
Metal Alloy Materials
Abstract:The static constant corrosion tests on Fe-B eutectic alloy are investigated in liquid zinc at 500°C. The systematic observation and research...
805
Authors: Hsi Hsin Chien, Kung Jeng Ma, Chien Hung Kuo
Chapter 3: Mechanical Engineering and Manufacturing
Abstract:Glass molding process provides a great potential for the production of precise glass optical components at low cost. The platinum-iridium...
533