[1]
Anggono W, Wardana ING, Lawes M, Hughes KJ, Wahyudi S, Hamidi N. Laminar Burning Characteristics of Biogas-Air Mixtures in Spark Ignited Premix Combustion. Journal of Applied Sciences Research 2012; 8: 4126-32.
DOI: 10.4028/www.scientific.net/amm.376.79
Google Scholar
[2]
Anggono. W., Wardana. I.N.G., Lawes. M., Hughes. K.J., Wahyudi. S., Hamidi. N., and Hayakawa. A. Laminar Burning Velocity and Flammability Characteristics of Biogas-Air Mixtures in Spark Ignited Premix Combustion. Journal of Physics Conference Series 2013; 423: 012015(1-7).
DOI: 10.1088/1742-6596/423/1/012015
Google Scholar
[3]
Cacua K, Amell A, Cadavid F. Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine. Biomass and Bioenergy 2012; 45: 159-167.
DOI: 10.1016/j.biombioe.2012.06.003
Google Scholar
[4]
Lichtman R, Ellegard A, Lal S, Sharma N. The Improved Biogas Systems Project: results and future work. Energy for Sustainable Development 1996; 3(4): 28–42.
DOI: 10.1016/s0973-0826(08)60202-1
Google Scholar
[5]
Ferrer I, Garfi M, Uggetti E, Marti LF, Calderon A, Velo E. Biogas production in low-cost household digesters at the Peruvian Andes. Biomas and Bioenergy 2011; 35: 1688-74.
DOI: 10.1016/j.biombioe.2010.12.036
Google Scholar
[6]
Bond T, Templeton MR. History and future of domestic biogas plants in the developing world. Energy for Sustainable Development 2011; 15(4): 347–54.
DOI: 10.1016/j.esd.2011.09.003
Google Scholar
[7]
Ilminnafik N, Hamidi N, Wardana ING. Behavior of flame propagation in LPG premixed combustion with carbon dioxide inhibitor. International Journal of Academic Research 2011; 3(2): 705-8.
Google Scholar
[8]
Flesch TK, Desjardins RL, Worth D. Fugitive methane emissions from an agricultural biodigester. Biomas and Bioenergy 2011; 35: 3927-35.
DOI: 10.1016/j.biombioe.2011.06.009
Google Scholar
[9]
Lafay Y, Taupin B, Martins G, Cabot G, Renou B, Boukhalfa. Experiment study of biogas combustion using a gas turbine configuration. Experiments in Fluids 2007; 43: 395-410.
DOI: 10.1007/s00348-007-0302-6
Google Scholar
[10]
Nathan SS, Mallikarjuna JM, Ramesh A. An experimental study of the biogas–diesel HCCI mode of engine operation, Energy Conversion and Management 2010; 51: 1347–53.
DOI: 10.1016/j.enconman.2009.09.008
Google Scholar
[11]
Porpatham E, Ramesh A, Nagalingam B. Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine. Fuel 2008; 87: 1651-9.
DOI: 10.1016/j.fuel.2007.08.014
Google Scholar
[12]
Masera O, Edwards R, Arnez CA, Berrueta V, Johnson M, Bracho LR, Riojas-Rodríguez H, Smith, KR, Impact of Patsari improved cookstoves on indoor air quality in Michoacán, Mexico. Energy for Sustainable Development 2007; 11: 45-56.
DOI: 10.1016/s0973-0826(08)60399-3
Google Scholar
[13]
Venkataraman C, Sagar AD, Habib G, Lam N, Smith KR, The Indian National Initiative for Advanced Biomass Cookstoves: The benefits of clean combustion. Energy for Sustainable Development 2010; 14: 63-72.
DOI: 10.1016/j.esd.2010.04.005
Google Scholar
[14]
Alwis AD. A review of Sri Lanka's performance with a renewable energy technology. Energy for Sustainable Development 2002; 6(1): 30–37.
DOI: 10.1016/s0973-0826(08)60296-3
Google Scholar
[15]
Kurchania AK, Panwar NL, Pagar. S.D. Design and performance evaluation of biogas stove for community cooking application, International Journal of Sustainable Energy 2010; 29: 116-23.
DOI: 10.1080/14786460903497391
Google Scholar
[16]
Fristrom RM, Westnberg AA, 1965. Flame Structure, McGraw-Hill.
Google Scholar
[17]
Glassman. I., Yetter R.A., 2008. Combustion. Fourth edition. Academic Press. Elsevier.
Google Scholar
[18]
Gillespie L, Lawes M., Sheppard CGW, Woolley R. Aspects of laminar and turbulent burning velocity relevant to SI engines. SAE Paper Series 2000-01-0192.
DOI: 10.4271/2000-01-0192
Google Scholar
[19]
Gu XJ, Haq MZ, Lawes M, Wooley R. Laminar burning velocity and Markstein lengths of methane-air mixtures. Combustion and Flame 2000; 121: 41-58.
DOI: 10.1016/s0010-2180(99)00142-x
Google Scholar
[20]
Bradley D, Hicks RA, Lawes M, Sheppard CGW, Wooley R. The measurement of laminar burning velocities and Markstein numbers for isooctane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb. Combustion and Flame 1998; 115: 126-44.
DOI: 10.1016/s0010-2180(97)00349-0
Google Scholar
[21]
Serrano C, Hernandez JJ, Mandilas C, Sheppard CGW, Woolley R. Laminar burning behaviour of biomass gasification-derived producer gas. Hydrogen Energy 2008; 33: 851–62.
DOI: 10.1016/j.ijhydene.2007.10.050
Google Scholar
[22]
Marshall SP, Taylor S, Stone CR, Davies TJ, Cracknell RF. Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals. Combustion and Flame 2011; 158: 1920–32.
DOI: 10.1016/j.combustflame.2011.02.016
Google Scholar
[23]
Miao H, Min J, Qi J, Qian H, Huang Z. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures. Hydrogen Energy 2009; 34: 3145–55.
DOI: 10.1016/j.ijhydene.2009.01.059
Google Scholar
[24]
Liao SY, Jiang DM, Gao J, Huang ZH, Cheng Q. Measurements of Markstein numbers and laminar burning velocities for liquefied petroleum gas–air mixtures. Fuel 2004; 83: 1281–8.
DOI: 10.1016/j.fuel.2003.12.013
Google Scholar
[25]
Metghalchi M, Keck JC, Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combustion and Flame 1980; 38: 143-54.
DOI: 10.1016/0010-2180(80)90046-2
Google Scholar
[26]
Aung KT, Tseng LK, Ismail MA, Faeth GM. Response to comment by S.C. Taylor and D.B. Smith on "Laminar burning velocities and Markstein Number of Hydrocarbon/air flames. Combustion and Flame 1995; 102: 526-530.
DOI: 10.1016/0010-2180(95)00035-5
Google Scholar
[27]
Ronney PD, 2001. Premixed-Gas Flames in Microgravity Combustion. Academic Press, London.
Google Scholar