Paper Title:
Formation of Amorphous and Nanostructural Powder Particles from Amorphous Metallic Glass Ribbons Using Ball Milling and Electrical Discharge Milling
  Abstract

In this paper both electric discharge assisted milling [1, 2] and conventional mechanosynthesis techniques were applied to investigate the effects of milling conditions on the fracture and agglomeration of amorphous CoSiB ribbons produced by planar flow casting. The effect of spark energy on particle shape and size produced by discharge milling was studied. Conventional milling in inert atmosphere for extended periods generally leads to the formation of porous powder particle aggregates, each particle comprised of small amorphous or, after extended milling times, nanocrystalline elements. The mechanism of agglomeration was believed to originate from repeated fracture, deformation and cold welding of individual ribbon elements. In contrast to conventional milling, spark discharge milling was found to induce the formation of predominantly sub-micron single particles of amorphous powder. The morphology of individual particles varied from sub-micron irregular shaped particles to remelted particles, depending on selection of vibrational amplitude during discharge. For high vibrational amplitudes and high energy input a wider range of particles as produced. These included sub-micron particles, remelted particles and welded agglomerates, and nano-sized particles produced as a fume and collected during discharge milling under flowing argon. These results combined with observations that most re-melted particles produced by discharge milling were also amorphous confirmed that extremely high heating and cooling rates are associated with discharge milling of metals. They also confirm the potential of electrical discharge milling as a new route for the synthesis of ultrafine and nanosized powder particles from amorphous ribbon, for possible processing into 3-D shapes.

  Info
Periodical
Solid State Phenomena (Volumes 101-102)
Edited by
K.J. Kurzydlowski and Z. Pakiela
Pages
111-116
DOI
10.4028/www.scientific.net/SSP.101-102.111
Citation
A. Calka, D. Wexler, J. Bystrzycki, D. Oleszak, "Formation of Amorphous and Nanostructural Powder Particles from Amorphous Metallic Glass Ribbons Using Ball Milling and Electrical Discharge Milling ", Solid State Phenomena, Vols. 101-102, pp. 111-116, 2005
Online since
January 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: O.N. Senkov
Abstract:Semi-amorphous aluminum alloy powders produced by gas atomization were compacted using equal channel angular extrusion (ECAE) in the...
155
Authors: Ge Wang, Chun Zhang, Yu Ying Zhu, Zhi Gang Chao, Qiang Li
Abstract:Ti50Fe45Sn5 amorphous alloys powder was prepared by mechanical alloying (MA) in a high-energy planetary ball mill. The non-crystallization...
104
Authors: Petr Urban, Francisco Gomez Cuevas, Juan M. Montes, Jesus Cintas
Chapter 8: Metals and Alloys
Abstract:The amorphization process by mechanical alloying in the Fe-Si alloy system has been studied. High energy ball milling has been applied for...
739
Authors: Jun Ting Luo, Chun Xiang Zhang, Hai Feng Ma, Ge Wang
Chapter 1: Mineral Materials
Abstract:The amorphous nano-sized silicon nitride powders were sintered by cold isostatic pressing –normal press sintering method. The sintering...
17
Authors: Y.B. Yuan, Rui Xiao Zheng, Su Jing Ge, Han Yang, Chao Li Ma
Abstract:Al86Ni7Y4.5Co1La1.5 (at.%) alloy powder was produced by argon gas atomization process....
281