Paper Title:
Behaviour of Natural and Implanted Iron during Annealing of Multicrystalline Silicon Wafers
  Abstract

Changes in the concentration of interstitial iron in multicrystalline silicon wafers after high temperature annealing (900°C) have been monitored by carrier lifetime measurements. Two cooling rates were investigated. The first was considered ‘fast’, meaning the interstitial Fe had no time to diffuse to precipitation sites, and should therefore be frozen-in, despite being far above the solubility limit at lower temperatures. A second ‘slow’ cool down to 650°C allowed ample time for the Fe to reach the surfaces or other internal precipitation sites. Surprisingly, in both cases the Fe remained in a supersaturated state. This indicates the precipitation process is not diffusion-limited, and that another energetic barrier to precipitate formation must be present. Since the slow cooling used here is similar to the cooling rate experienced by multicrystalline ingots after crystallisation, this precipitate-impeding mechanism is probably responsible for the surprisingly high interstitial Fe concentrations often found in as-grown multicrystalline silicon wafers.

  Info
Periodical
Solid State Phenomena (Volumes 108-109)
Edited by
B. Pichaud, A. Claverie, D. Alquier, H. Richter and M. Kittler
Pages
519-524
DOI
10.4028/www.scientific.net/SSP.108-109.519
Citation
D. Macdonald, T. Roth, L.J. Geerligs, A. Cuevas, "Behaviour of Natural and Implanted Iron during Annealing of Multicrystalline Silicon Wafers", Solid State Phenomena, Vols. 108-109, pp. 519-524, 2005
Online since
December 2005
Export
Price
$32.00
Share

In order to see related information, you need to Login.

In order to see related information, you need to Login.

Authors: Jasmin Hofstetter, Jean F. Lelièvre, Carlos del Cañizo, Antonio Luque
Abstract:The e ect of slow cooling after di erent high temperature treatments on the in- terstitial iron concentration and on the electron lifetime...
387
Authors: Jasmin Hofstetter, David P. Fenning, Douglas M. Powell, Ashley E. Morishige, Tonio Buonassisi
I. Defect engineering in silicon solar cells
Abstract:In multicrystalline silicon for photovoltaic applications, high concentrations of iron are usually found, which deteriorate material...
15